最初製成的鋦樣本數量很少,肉眼僅僅可見。科學家利用其放射特性,辨認出鋦元素。Louis Werner和Isadore Perlman在1947年於加州大學對鋂-241進行中子撞擊,首次製備了重30 µg的可觀量氫氧化鋦-242。[16][17][18] W. W. T. Crane、J. C. Wallmann和B. B. Cunningham在1950年製成了宏觀量的氟化鋦,其磁性和GdF3相似。這首次提供了實驗證據,證明鋦在其化合物中具+3氧化態。[16]1951年,科學家用鋇還原氟化鋦,唯一一次製成了金屬態的鋦。[19][20]
^Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States. Inorg. Chem. (American Chemical Society). 2018,57 (15): 9453–9467.OSTI 1631597.PMID 30040397.S2CID 51717837.doi:10.1021/acs.inorgchem.8b01450.
^Domanov, V. P.; Lobanov, Yu. V. Formation of volatile curium(VI) trioxide CmO3. Radiochemistry (SP MAIK Nauka/Interperiodica). October 2011,53 (5): 453–6.S2CID 98052484.doi:10.1134/S1066362211050018.
^Domanov, V. P. Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO4. Radiochemistry (SP MAIK Nauka/Interperiodica). January 2013,55 (1): 46–51.doi:10.1134/S1066362213010098.
^Zaitsevskii, Andréi; Schwarz, W H Eugen. Structures and stability of AnO4 isomers, An = Pu, Am, and Cm: a relativistic density functional study. Physical Chemistry Chemical Physics. April 2014,2014 (16): 8997–9001.Bibcode:2014PCCP...16.8997Z.PMID 24695756.doi:10.1039/c4cp00235k.
^8.08.18.28.3Seaborg, G. T.; James, R. A. and Ghiorso, A.: "The New Element Curium (Atomic Number 96)", NNES PPR(National Nuclear Energy Series, Plutonium Project Record), Vol. 14 B,The Transuranium Elements: Research Papers, Paper No. 22.2, McGraw-Hill Book Co., Inc., New York, 1949;Abstract (页面存档备份,存于互联网档案馆);Full text (January 1948) (页面存档备份,存于互联网档案馆).
^9.09.19.29.39.4Morss, L. R.; Edelstein, N. M. and Fugere, J. (eds):The Chemistry of the Actinide Elements and transactinides, volume 3, Springer-Verlag, Dordrecht 2006,ISBN 978-1-4020-3555-5.
^Seaborg, G. T.; Perlman, I. Table of Isotopes. Reviews of Modern Physics (American Physical Society (APS)). 1948-10-01,20 (4): 639.ISSN 0034-6861.doi:10.1103/revmodphys.20.585.
^16.016.116.216.316.4Hammond C. R. "The elements" inLide, D. R. (编), CRC Handbook of Chemistry and Physics 86th, Boca Raton (FL): CRC Press, 2005,ISBN 0-8493-0486-5
^L. B. Werner, I. Perlman: "Isolation of Curium", NNES PPR (National Nuclear Energy Series, Plutonium Project Record), Vol. 14 B,The Transuranium Elements: Research Papers, Paper No. 22.5, McGraw-Hill Book Co., Inc., New York, 1949.
^Haire, R; Peterson, J; Benedict, U; Dufour, C; Itie, J. X-ray diffraction of curium-248 metal under pressures of up to 52 GPa. Journal of the Less Common Metals. 1985,109 (1): 71.doi:10.1016/0022-5088(85)90108-0.
^27.027.127.2Denecke, Melissa A.; Rossberg, André; Panak, Petra J.; Weigl, Michael; Schimmelpfennig, Bernd; Geist, Andreas. Characterization and Comparison of Cm(III) and Eu(III) Complexed with 2,6-Di(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine Using EXAFS, TRFLS, and Quantum-Chemical Methods. Inorganic Chemistry. 2005,44 (23): 8418.PMID 16270980.doi:10.1021/ic0511726.
^28.028.1Bünzli, J.-C. G. and Choppin, G. R.Lanthanide probes in life, chemical, and earth sciences: theory and practice, Elsevier, Amsterdam, 1989ISBN 978-0-444-88199-1
^Keenan, Thomas K. First Observation of Aqueous Tetravalent Curium. Journal of the American Chemical Society. 1961,83 (17): 3719.doi:10.1021/ja01478a039.
^31.031.131.2Asprey, L. B.; Ellinger, F. H.; Fried, S.; Zachariasen, W. H. Evidence for Quadrivalent Curium: X-Ray Data on Curium Oxides1. Journal of the American Chemical Society. 1955,77 (6): 1707.doi:10.1021/ja01611a108.
^Jensen, Mark P.; Bond, Andrew H. Comparison of Covalency in the Complexes of Trivalent Actinide and Lanthanide Cations. Journal of the American Chemical Society. 2002,124 (33): 9870.PMID 12175247.doi:10.1021/ja0178620.
^Seaborg, G. T. Overview of the Actinide and Lanthanide (thef) Elements. Radiochimica Acta. 1993,61: 115–122.
^Noe, M. Self-radiation effects on the lattice parameter of 244CmO2. Inorganic and Nuclear Chemistry Letters. 1971,7 (5): 421.doi:10.1016/0020-1650(71)80177-0.
^Haug, H. Curium sesquioxide Cm2O3. Journal of Inorganic and Nuclear Chemistry. 1967,29 (11): 2753.doi:10.1016/0022-1902(67)80014-9.
^Fuger, J; Haire, R; Peterson, J. Molar enthalpies of formation of BaCmO3 and BaCfO3. Journal of Alloys and Compounds. 1993,200 (1–2): 181.doi:10.1016/0925-8388(93)90491-5.
^Keenan, T. Lattice constants of K7Cm6F31 trends in the 1:1 and 7:6 alkali metal-actinide(IV) series. Inorganic and Nuclear Chemistry Letters. 1967,3 (10): 391.doi:10.1016/0020-1650(67)80092-8.
^Burns, J. Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3. Journal of Inorganic and Nuclear Chemistry. 1975,37 (3): 743.doi:10.1016/0022-1902(75)80532-X.
^Wallmann, J. Crystal structure and lattice parameters of curium trichloride. Journal of Inorganic and Nuclear Chemistry. 1967,29 (11): 2745.doi:10.1016/0022-1902(67)80013-7.
^Weigel, F; Wishnevsky, V; Hauske, H. The vapor phase hydrolysis of PuCl3 and CmCl3: heats of formation of PuOC1 and CmOCl. Journal of the Less Common Metals. 1977,56 (1): 113.doi:10.1016/0022-5088(77)90224-7.
^Damien, D. Preparation and lattice parameters of curium sulfides and selenides. Inorganic and Nuclear Chemistry Letters. 1975,11 (7–8): 451.doi:10.1016/0020-1650(75)80017-1.
^Kerridge, Andrew; Kaltsoyannis, Nikolas. Are the Ground States of the Later Actinocenes Multiconfigurational? All-Electron Spin−Orbit Coupled CASPT2 Calculations on An(η8-C8H8)2(An = Th, U, Pu, Cm). The Journal of Physical Chemistry A. 2009,113 (30): 8737.PMID 19719318.doi:10.1021/jp903912q.
^Girnt, Denise; Roesky, Peter W.; Geist, Andreas; Ruff, Christian M.; Panak, Petra J.; Denecke, Melissa A. 6-(3,5-Dimethyl-1H-pyrazol-1-yl)-2,2′-bipyridine as Ligand for Actinide(III)/Lanthanide(III) Separation. Inorganic Chemistry. 2010,49 (20): 9627.PMID 20849125.doi:10.1021/ic101309j.
^52.052.1Glorius, M.; Moll, H.; Bernhard, G. Complexation of curium(III) with hydroxamic acids investigated by time-resolved laser-induced fluorescence spectroscopy. Polyhedron. 2008,27 (9–10): 2113.doi:10.1016/j.poly.2008.04.002.
^53.053.1Heller, Anne; Barkleit, Astrid; Bernhard, Gert; Ackermann, Jörg-Uwe. Complexation study of europium(III) and curium(III) with urea in aqueous solution investigated by time-resolved laser-induced fluorescence spectroscopy. Inorganica Chimica Acta. 2009,362 (4): 1215.doi:10.1016/j.ica.2008.06.016.
^54.054.1Moll, Henry; Johnsson, Anna; Schäfer, Mathias; Pedersen, Karsten; Budzikiewicz, Herbert; Bernhard, Gert. Curium(III) complexation with pyoverdins secreted by a groundwater strain of Pseudomonas fluorescens. BioMetals. 2007,21 (2): 219.PMID 17653625.doi:10.1007/s10534-007-9111-x.
^55.055.1Moll, Henry; Geipel, Gerhard; Bernhard, Gert. Complexation of curium(III) by adenosine 5′-triphosphate (ATP): A time-resolved laser-induced fluorescence spectroscopy (TRLFS) study. Inorganica Chimica Acta. 2005,358 (7): 2275.doi:10.1016/j.ica.2004.12.055.
^Moll, H; Stumpf, T; Merroun, M; Rossberg, A; Selenska-Pobell, S; Bernhard, G. Time-resolved laser fluorescence spectroscopy study on the interaction of curium(III) with Desulfovibrio äspöensis DSM 10631T. Environmental Science & Technology. 2004,38 (5): 1455–9.PMID 15046347.doi:10.1021/es0301166.
^Gopka, V. F.; Yushchenko, A. V.; Yushchenko, V. A.; Panov, I. V.; Kim, Ch. Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065). Kinematics and Physics of Celestial Bodies. 15 May 2008,24 (2): 89–98.Bibcode:2008KPCB...24...89G.S2CID 120526363.doi:10.3103/S0884591308020049.
^77.077.1Basic elements of static RTGs (页面存档备份,存于互联网档案馆), G.L. Kulcinski, NEEP 602 Course Notes (Spring 2000), Nuclear Power in Space, University of Wisconsin Fusion Technology Institute (see last page)
^Magnusson D, Christiansen B, Foreman MRS, Geist A, Glatz JP, Malmbeck R, Modolo G, Serrano-Purroy D and Sorel C. Demonstration of a SANEX Process in Centrifugal Contactors using the CyMe4-BTBP Molecule on a Genuine Fuel Solution. Solvent Extraction and Ion Exchange. 2009,27 (2): 97.doi:10.1080/07366290802672204.
^Cunningham, B.B.; Wallmann, J.C. Crystal structure and melting point of curium metal. Journal of Inorganic and Nuclear Chemistry. 1964,26 (2): 271.doi:10.1016/0022-1902(64)80069-5.
^Stevenson, J; Peterson, J. Preparation and structural studies of elemental curium-248 and the nitrides of curium-248 and berkelium-249. Journal of the Less Common Metals. 1979,66 (2): 201.doi:10.1016/0022-5088(79)90229-7.
^Gmelin Handbook of Inorganic Chemistry, System No. 71, Volume 7 a, transuranics, Part B 1, pp. 67–68.
^Eubanks, I. Preparation of curium metal. Inorganic and Nuclear Chemistry Letters. 1969,5 (3): 187.doi:10.1016/0020-1650(69)80221-7.
^Binder, Harry H.:Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999,ISBN 978-3-7776-0736-8, pp. 174–178.
^Gmelin Handbook of Inorganic Chemistry, System No. 71, Volume 7a, transuranics, Part A2, p. 289
^Rieder, R.; Wanke, H.; Economou, T. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder. Bulletin of the American Astronomical Society. 09/1996,28: 1062.Bibcode:1996DPS....28.0221R.请检查|date=中的日期值 (帮助)
^Hoffmann, K.Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente, Urania-Verlag, Leipzig, Jena, Berlin 1979, no ISBN, p. 233(德文)