在ELP2000–85(參見Chaprontet alii 1988),D是一個二次項的函數,其值為 −5.8681"T²;陰曆月的數量用N表示,產生的修正式為+87.403×10–12N²[12],得到與合的時刻相差的天數。這個項目內包含了0.5×(−23.8946 "/cy²)的潮汐加速。目前最佳的估計是來自月球雷射陣列的加速度(參見Chaprontet alii 2002):(−25.858 ±0.003)"/cy²。因此,新的二次項參數D是 -6.8498"T²[13]。實際上,Chaprontet alii(2002)提供了多項式的証明,在他們的表4也提供了相同的証明。這項轉換修改了到合的時刻為+14.622×10−12N²天;這個二項式現在成為:
^Annual aberration is the ratio of Earth's orbital velocity (around 30 km/s) to the speed of light (about 300,000 km/s), which shifts the Sun's apparent position relative to the celestial sphere toward the west by about 1/10,000 radian. Light-time correction for the Moon is the distance it moves during the time it takes its light to reach Earth divided by the Earth-Moon distance, yielding an angle in radians by which its apparent position lags behind its computed geometric position. Light-time correction for the Sun is negligible because it is almost motionless during 8.3 minutes relative to thebarycenter (center-of-mass) of the solar system. The aberration of light for the Moon is also negligible (the center of the Earth moves too slowly around the Earth-Moon barycenter (0.002 km/s); and the so-called diurnal aberration, caused by the motion of an observer on the surface of the rotating Earth (0.5 km/s at the equator) can be neglected. Although aberration and light-time are often combined asplanetary aberration, Meeus separated them (op.cit. p.210).
^Derived Constant #14 from the IAU (1976) System of Astronomical Constants (proceedings of IAU Sixteenth General Assembly (1976):Transactions of the IAU XVIB p.58 (1977)); or any astronomical almanac; ore.g.[1] (页面存档备份,存于互联网档案馆)
^formula in: G.M.Clemence, J.G.Porter, D.H.Sadler (1952): "Aberration in the lunar ephemeris",Astronomical Journal57(5) (#1198) pp.46..47[2] (页面存档备份,存于互联网档案馆); but computed with the conventional value of 384400 km for the mean distance which gives a different rounding in the last digit.
^Apparent mean solar longitude is −20.496" from mean geometric longitude; apparent mean lunar longitude −0.704" from mean geometric longitude; correction to D = Moon − Sun is −0.704" + 20.496" = +19.792" that the apparent Moon is ahead of the apparent Sun; divided by 360×3600"/circle is 1.527×10−5 part of a circle; multiplied by 29.53... days for the Moon to travel a full circle with respect to the Sun is 0.000451 days that the apparent Moon reaches the apparent Sun ahead of time.