Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Critical values of inner functions.(English)Zbl 07916603

Summary: Let \(\mathscr{J}\) be the space of inner functions of finite entropy endowed with the topology of stable convergence. We prove that an inner function \(F \in \mathscr{J}\) possesses a radial limit (and in fact, a minimal fine limit) in the unit disk at \(\sigma (F^\prime)\) a.e. point on the unit circle. We use this to show that the singular value measure \(\nu(F) = \sum_{c \in \operatorname{crit} F}(1 - |c|) \cdot \delta_{F (c)} + F_\ast(\sigma (F^\prime))\) varies continuously in \(F\). Our analysis involves a surprising connection between Beurling-Carleson sets and angular derivatives.

MSC:

30Dxx Entire and meromorphic functions of one complex variable, and related topics
30Jxx Function theory on the disc
30Cxx Geometric function theory

Cite

References:

[1]Ahern, P. R.; Clark, D. N., On inner functions with \(H_p\)-derivative, Mich. Math. J., 21, 2, 115-127, 1974 ·Zbl 0277.30027
[2]Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, International Series in Pure and Applied Mathematics, 1978, McGraw-Hill Book Co.: McGraw-Hill Book Co. New York
[3]Aldaz, J. M., A general covering lemma for the real line, Real Anal. Exch., 17, 1, 394-398, 1991/1992 ·Zbl 0757.26007
[4]Armitage, D. H.; Gardiner, S. J., Classical Potential Theory, Springer Monographs in Mathematics, 2001, Springer: Springer London ·Zbl 0972.31001
[5]Bass, R., Probabilistic Techniques in Analysis, Probability and Its Applications, 1995, Springer: Springer New York ·Zbl 0817.60001
[6]Berman, R.; Brown, L.; Cohn, W., Cyclic vectors of bounded characteristic in Bergman spaces, Mich. Math. J., 31, 295-306, 1984 ·Zbl 0594.30037
[7]Betsakos, D.; Karamanlis, N., Conformal invariants and the angular derivative problem, J. Lond. Math. Soc., 105, 1, 587-620, 2022 ·Zbl 1528.30004
[8]Bishop, C. J., An indestructible Blaschke product in the little Bloch space, Publ. Mat., 37, 1, 95-109, 1993 ·Zbl 0810.30024
[9]Collingwood, E. F.; Lohwater, A. J., The Theory of Cluster Sets, 1966, Cambridge University Press ·Zbl 0149.03003
[10]Craizer, M., Entropy of inner functions, Isr. J. Math., 74, 2, 129-168, 1991 ·Zbl 0744.30024
[11]Dyakonov, K. M., A characterization of Möbius transformations, C. R. Math. Acad. Sci. Paris, 352, 2, 593-595, 2014 ·Zbl 1297.30079
[12]El-Fallah, O.; Elmadani, Y.; Kellay, K., Kernel and capacity estimates in Dirichlet spaces, J. Funct. Anal., 276, 3, 867-895, 2019 ·Zbl 1416.46028
[13]El-Fallah, O.; Elmadani, Y.; Labghail, I., Extremal functions and invariant subspaces in Dirichlet spaces, Adv. Math., 408, Article 108604 pp., 2022 ·Zbl 07588417
[14]Fary, I.; Isenberg, E. M., On a converse of the Jordan curve theorem, Am. Math. Mon., 81, 6, 636-639, 1974 ·Zbl 0287.54037
[15]Garnett, J. B.; Marshall, D. E., Harmonic Measure, New Mathematical Monographs 2, 2005, Cambridge University Press ·Zbl 1077.31001
[16]Heins, M., On a class of conformal metrics, Nagoya Math. J., 21, 1-60, 1962 ·Zbl 0113.05603
[17]Ivrii, O., Prescribing inner parts of derivatives of inner functions, J. Anal. Math., 139, 495-519, 2019 ·Zbl 1460.30019
[18]Ivrii, O., Stable convergence of inner functions, J. Lond. Math. Soc., 102, 257-286, 2020 ·Zbl 1456.30096
[19]Kraus, D.; Roth, O., Composition and decomposition of indestructible Blaschke products, Comput. Methods Funct. Theory, 13, 253-262, 2013 ·Zbl 1280.30024
[20]Mashreghi, J., Derivatives of Inner Functions, 2012, Fields Institute Monographs
[21]Mashreghi, J.; Ransford, T., Approximation in the closed unit ball, (Mashreghi, J.; Manolaki, M.; Gauthier, P., New Trends in Approximation Theory. New Trends in Approximation Theory, Fields Institute Communications, vol. 81, 2018), 89-129 ·Zbl 1412.30147
[22]McMullen, C. T., Ribbon \(\mathbb{R} \)-trees and holomorphic dynamics on the unit disk, J. Topol., 2, 23-76, 2009 ·Zbl 1173.37043
[23]Munkres, J. R., Topology, a First Course, 2000, Prentice-Hall: Prentice-Hall Upper Saddle River, NJ ·Zbl 0306.54001
[24]Poltoratski, A.; Sarason, D., Aleksandrov-Clark measures, (Matheson, A. L.; Stessin, M. I.; Timoney, R. M., Recent Advances in Operator-Related Function Theory. Recent Advances in Operator-Related Function Theory, Contemp. Math., vol. 393, 2006, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-14 ·Zbl 1102.30032
[25]Pommerenke, C., On the Green’s function of Fuchsian groups, Ann. Acad. Sci. Fenn., Math., 2, 409-427, 1976 ·Zbl 0363.30029
[26]Rohde, S.; Wong, C., Half-plane capacity and conformal radius, Proc. Am. Math. Soc., 142, 3, 931-938, 2014 ·Zbl 1283.30058
[27]Saksman, E., An elementary introduction to Clark measures, (Girela Álvarez, D.; González Enríquez, C., Topics in Complex Analysis and Operator Theory, 2007, Univ. Málaga: Univ. Málaga Málaga), 85-136 ·Zbl 1148.47001
[28]Warschawski, S. E., On the degree of variation in conformal mapping of variable regions, Trans. Am. Math. Soc., 69, 2, 335-356, 1950 ·Zbl 0041.05102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp