[1] | Ahern, P. R.; Clark, D. N., On inner functions with \(H_p\)-derivative, Mich. Math. J., 21, 2, 115-127, 1974 ·Zbl 0277.30027 |
[2] | Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, International Series in Pure and Applied Mathematics, 1978, McGraw-Hill Book Co.: McGraw-Hill Book Co. New York |
[3] | Aldaz, J. M., A general covering lemma for the real line, Real Anal. Exch., 17, 1, 394-398, 1991/1992 ·Zbl 0757.26007 |
[4] | Armitage, D. H.; Gardiner, S. J., Classical Potential Theory, Springer Monographs in Mathematics, 2001, Springer: Springer London ·Zbl 0972.31001 |
[5] | Bass, R., Probabilistic Techniques in Analysis, Probability and Its Applications, 1995, Springer: Springer New York ·Zbl 0817.60001 |
[6] | Berman, R.; Brown, L.; Cohn, W., Cyclic vectors of bounded characteristic in Bergman spaces, Mich. Math. J., 31, 295-306, 1984 ·Zbl 0594.30037 |
[7] | Betsakos, D.; Karamanlis, N., Conformal invariants and the angular derivative problem, J. Lond. Math. Soc., 105, 1, 587-620, 2022 ·Zbl 1528.30004 |
[8] | Bishop, C. J., An indestructible Blaschke product in the little Bloch space, Publ. Mat., 37, 1, 95-109, 1993 ·Zbl 0810.30024 |
[9] | Collingwood, E. F.; Lohwater, A. J., The Theory of Cluster Sets, 1966, Cambridge University Press ·Zbl 0149.03003 |
[10] | Craizer, M., Entropy of inner functions, Isr. J. Math., 74, 2, 129-168, 1991 ·Zbl 0744.30024 |
[11] | Dyakonov, K. M., A characterization of Möbius transformations, C. R. Math. Acad. Sci. Paris, 352, 2, 593-595, 2014 ·Zbl 1297.30079 |
[12] | El-Fallah, O.; Elmadani, Y.; Kellay, K., Kernel and capacity estimates in Dirichlet spaces, J. Funct. Anal., 276, 3, 867-895, 2019 ·Zbl 1416.46028 |
[13] | El-Fallah, O.; Elmadani, Y.; Labghail, I., Extremal functions and invariant subspaces in Dirichlet spaces, Adv. Math., 408, Article 108604 pp., 2022 ·Zbl 07588417 |
[14] | Fary, I.; Isenberg, E. M., On a converse of the Jordan curve theorem, Am. Math. Mon., 81, 6, 636-639, 1974 ·Zbl 0287.54037 |
[15] | Garnett, J. B.; Marshall, D. E., Harmonic Measure, New Mathematical Monographs 2, 2005, Cambridge University Press ·Zbl 1077.31001 |
[16] | Heins, M., On a class of conformal metrics, Nagoya Math. J., 21, 1-60, 1962 ·Zbl 0113.05603 |
[17] | Ivrii, O., Prescribing inner parts of derivatives of inner functions, J. Anal. Math., 139, 495-519, 2019 ·Zbl 1460.30019 |
[18] | Ivrii, O., Stable convergence of inner functions, J. Lond. Math. Soc., 102, 257-286, 2020 ·Zbl 1456.30096 |
[19] | Kraus, D.; Roth, O., Composition and decomposition of indestructible Blaschke products, Comput. Methods Funct. Theory, 13, 253-262, 2013 ·Zbl 1280.30024 |
[20] | Mashreghi, J., Derivatives of Inner Functions, 2012, Fields Institute Monographs |
[21] | Mashreghi, J.; Ransford, T., Approximation in the closed unit ball, (Mashreghi, J.; Manolaki, M.; Gauthier, P., New Trends in Approximation Theory. New Trends in Approximation Theory, Fields Institute Communications, vol. 81, 2018), 89-129 ·Zbl 1412.30147 |
[22] | McMullen, C. T., Ribbon \(\mathbb{R} \)-trees and holomorphic dynamics on the unit disk, J. Topol., 2, 23-76, 2009 ·Zbl 1173.37043 |
[23] | Munkres, J. R., Topology, a First Course, 2000, Prentice-Hall: Prentice-Hall Upper Saddle River, NJ ·Zbl 0306.54001 |
[24] | Poltoratski, A.; Sarason, D., Aleksandrov-Clark measures, (Matheson, A. L.; Stessin, M. I.; Timoney, R. M., Recent Advances in Operator-Related Function Theory. Recent Advances in Operator-Related Function Theory, Contemp. Math., vol. 393, 2006, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-14 ·Zbl 1102.30032 |
[25] | Pommerenke, C., On the Green’s function of Fuchsian groups, Ann. Acad. Sci. Fenn., Math., 2, 409-427, 1976 ·Zbl 0363.30029 |
[26] | Rohde, S.; Wong, C., Half-plane capacity and conformal radius, Proc. Am. Math. Soc., 142, 3, 931-938, 2014 ·Zbl 1283.30058 |
[27] | Saksman, E., An elementary introduction to Clark measures, (Girela Álvarez, D.; González Enríquez, C., Topics in Complex Analysis and Operator Theory, 2007, Univ. Málaga: Univ. Málaga Málaga), 85-136 ·Zbl 1148.47001 |
[28] | Warschawski, S. E., On the degree of variation in conformal mapping of variable regions, Trans. Am. Math. Soc., 69, 2, 335-356, 1950 ·Zbl 0041.05102 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.