Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On rainbow quadrilaterals in colored point sets.(English)Zbl 07593903

Summary: Let \(S\) be a set of \(n\) points on the plane in general position whose elements have been colored with \(k\) colors. Arainbow polygon of \(S\) is a polygon such that all of its vertices are elements of \(S\) and have different colors. In this paper we give \(O(k n^2)\)-time algorithms to solve the following problems: find a minimum(maximum)-area rainbow triangle, and a minimum(maximum)-area rainbow quadrilateral of \(S\), \(k \ge 3\). We also present an \(O(n^2)\)-time algorithm to determine if a 4-colored point set contains aconvex rainbow quadrilateral, and an \(O(n^3)\)-time algorithm to determine if a 4-colored point set contains an empty rainbow quadrilateral, whether convex or not.

MSC:

68Uxx Computing methodologies and applications
68Qxx Theory of computing
52Axx General convexity

Cite

References:

[1]Aichholzer, O.; Fabila-Monroy, R.; Flores-Penaloza, D.; Hackl, T.; Huemer, C.; Urrutia, J., Empty monochromatic triangles, Comput Geom, 42, 9, 934-938 (2009) ·Zbl 1193.52008 ·doi:10.1016/j.comgeo.2009.04.002
[2]Aichholzer, O.; Fabila-Monroy, R.; Hackl, T.; Huemer, C.; Urrutia, J., Empty monochromatic simplices, Discrete Comput Geom, 51, 2, 362-393 (2014) ·Zbl 1294.05194 ·doi:10.1007/s00454-013-9565-2
[3]Aichholzer, O., Urrutia, J., Vogtenhuber, B.: Balanced 6-holes in bichromatic point sets. In: Japanese Conference on Discrete and Computational Geometry, pp. 5-6. (2013)
[4]Asano, T.; Asano, T.; Guibas, L.; Hershberger, J.; Imai, H., Visibility of disjoint polygons, Algorithmica, 1, 1-4, 49-63 (1986) ·Zbl 0611.68062 ·doi:10.1007/BF01840436
[5]Bautista-Santiago, C.; Díaz-Báñez, JM; Lara, D.; Pérez-Lantero, P.; Urrutia, J.; Ventura, I., Computing optimal islands, Oper. Res. Lett., 39, 4, 246-251 (2011) ·Zbl 1242.90183 ·doi:10.1016/j.orl.2011.04.008
[6]Bereg, S.; Díaz-Báñez, JM; Fabila-Monroy, R.; Pérez-Lantero, P.; Ramírez-Vigueras, A.; Sakai, T.; Urrutia, J.; Ventura, I., On balanced 4-holes in bichromatic point sets, Comput. Geom., 48, 3, 169-179 (2015) ·Zbl 1307.52009 ·doi:10.1016/j.comgeo.2014.09.004
[7]Chan, TM, More logarithmic-factor speedups for 3sum,(median,+)-convolution, and some geometric 3sum-hard problems, ACM Trans. Algorithms (TALG), 16, 1, 1-23 (2019) ·Zbl 1454.68210
[8]Chandran, S.; Mount, DM, A parallel algorithm for enclosed and enclosing triangles, International Journal of Computational Geometry & Applications, 2, 2, 191-214 (1992) ·Zbl 0762.68061 ·doi:10.1142/S0218195992000123
[9]Chazelle, B.; Guibas, LJ; Lee, DT, The power of geometric duality, BIT Numer. Math., 25, 1, 76-90 (1985) ·Zbl 0603.68072 ·doi:10.1007/BF01934990
[10]Cravioto-Lagos, J.; González-Martínez, AC; Sakai, T.; Urrutia, J., On almost empty monochromatic triangles and convex quadrilaterals in colored point sets, Graphs Combin., 35, 6, 1475-1493 (2019) ·Zbl 1431.05030 ·doi:10.1007/s00373-019-02081-8
[11]Devillers, O.; Hurtado, F.; Károlyi, G.; Seara, C., Chromatic variants of the erdos-szekeres theorem on points in convex position, Comput. Geom., 26, 3, 193-208 (2003) ·Zbl 1034.52014 ·doi:10.1016/S0925-7721(03)00013-0
[12]Edelsbrunner, H.; Guibas, LJ, Topologically sweeping an arrangement, J. Comput. Syst. Sci., 38, 1, 165-194 (1989) ·Zbl 0676.68013 ·doi:10.1016/0022-0000(89)90038-X
[13]Edelsbrunner, H.; O’Rourke, J.; Seidel, R., Constructing arrangements of lines and hyperplanes with applications, SIAM J. Comput., 15, 2, 341-363 (1986) ·Zbl 0603.68104 ·doi:10.1137/0215024
[14]Eppstein, D.: New algorithms for minimum area k-gons. In: Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms, pp. 83-88 (1992) ·Zbl 0829.68117
[15]Eppstein, D.; Overmars, M.; Rote, G.; Woeginger, G., Finding minimum area k-gons, Discrete & Computational Geometry, 7, 1, 45-58 (1992) ·Zbl 0746.68038 ·doi:10.1007/BF02187823
[16]Erdös, P.; Szekeres, G., A combinatorial problem in geometry, Compos. Math., 2, 463-470 (1935) ·JFM 61.0651.04
[17]Fabila-Monroy, R.; Perz, D.; Trujillo-Negrete, AL, Empty rainbow triangles in k-colored point sets, Comput. Geom., 95 (2021) ·Zbl 1516.68104 ·doi:10.1016/j.comgeo.2020.101731
[18]Flores-Peñaloza, D.; Kano, M.; Martínez-Sandoval, L.; Orden, D.; Tejel, J.; Tóth, CD; Urrutia, J.; Vogtenhuber, B., Rainbow polygons for colored point sets in the plane, Discret. Math., 344, 7 (2021) ·Zbl 1466.52007 ·doi:10.1016/j.disc.2021.112406
[19]Gajentaan, A.; Overmars, MH, On a class of \({O}(n^2)\) problems in computational geometry, Comput. Geom., 5, 3, 165-185 (1995) ·Zbl 0839.68105 ·doi:10.1016/0925-7721(95)00022-2
[20]Ghosh, SK, Visibility algorithms in the plane (2007), Cambridge: Cambridge University Press, Cambridge ·Zbl 1149.68076 ·doi:10.1017/CBO9780511543340
[21]Hêche, JF; Liebling, TM, Finding minimum area simple pentagons, Oper. Res. Lett., 21, 5, 229-233 (1997) ·Zbl 0908.90212 ·doi:10.1016/S0167-6377(97)00051-5
[22]van der Hoog, I., Keikha, V., Löffler, M., Mohades, A., Urhausen, J.: Maximum-area triangle in a convex polygon, revisited. Inf. Process. Lett. p. 105943 (2020) ·Zbl 1441.68272
[23]Jin, K.: Maximal area triangles in a convex polygon. arXiv:1707.04071 (2017)
[24]Kallus, Y.: A linear-time algorithm for the maximum-area inscribed triangle in a convex polygon. arXiv:1706.03049 (2017)
[25]Pach, J.; Tóth, G., Monochromatic empty triangles in two-colored point sets, Discret. Appl. Math., 161, 9, 1259-1261 (2013) ·Zbl 1277.05071 ·doi:10.1016/j.dam.2011.08.026
[26]Rote, G.: The largest contained quadrilateral and the smallest enclosing parallelogram of a convex polygon. arXiv:1905.11203 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp