[1] | Chen, JH; Hung, WL., An automatic clustering algorithm for probability density functions, J Stat Comput Simul, 85, 3047-3063 (2015) ·Zbl 1457.62197 ·doi:10.1080/00949655.2014.949715 |
[2] | Chen, L, Shiu, SY.A new clustering algorithm based on self-updating process. JSM proceedings, statistical computing section; Salt Lake City, Utah; 2007. p. 2034-2038. |
[3] | Hung, WL; Chang-Chien, SJ; Yang, MS., Self-updating clustering algorithm for estimating the parameters in mixtures of von Mises distributions, J Appl Stat, 39, 2259-2274 (2012) ·Zbl 1514.62109 ·doi:10.1080/02664763.2012.706268 |
[4] | Kohonen, T., The self-organizing map, Neurocomputing, 21, 1-6 (1998) ·Zbl 0917.68176 ·doi:10.1016/S0925-2312(98)00030-7 |
[5] | Goh, A.; Vidal, R., Unsupervised Riemannian clustering of probability density functions, ECML PKDD, Part I, LNAI, 5211, 377-392 (2008) |
[6] | Montanari, A.; Calò, DG., Model-based clustering of probability density functions, Adv Data Anal Classif, 7, 301-319 (2013) ·Zbl 1273.62140 ·doi:10.1007/s11634-013-0140-8 |
[7] | Van, TV; Pham-Gia, T., Clustering probability distributions, J Appl Stat, 37, 1891-1910 (2010) ·Zbl 1511.62142 ·doi:10.1080/02664760903186049 |
[8] | Chen, JH; Chang, YC; Hung, WL., A robust automatic clustering algorithm for probability density functions with application to categorizing color images, Commun Stat Simul Comput, 47, 7, 2152-2168 (2017) ·Zbl 07550091 ·doi:10.1080/03610918.2017.1337137 |
[9] | Chen, TL; Hsieh, DN; Hung, H., γ-SUP: A clustering algorithm for cryo-electron microscopy images of asymmetric particles, Ann Appl Stat, 8, 259-285 (2014) ·Zbl 1454.62527 ·doi:10.1214/13-AOAS680 |
[10] | Caliński, T.; Harabasz, J., A dendrite method for cluster analysis, Commun Stat-theory Methods, 3, 1-27 (1974) ·Zbl 0273.62010 ·doi:10.1080/03610927408827101 |
[11] | Masoud, H.; Saeed, J.; Hasheminejad, SMM., Dynamic clustering using combinatorial particle swarm optimization, Appl Intell, 38, 289-314 (2013) ·doi:10.1007/s10489-012-0373-9 |
[12] | Gokcay, E.; Principe, JC., Information theoretic clustering, IEEE Trans Pattern Anal Mach Intell, 24, 158-171 (2002) ·doi:10.1109/34.982897 |
[13] | Jenssen, R, Hild, KE, Erdogmus, D, et al. Clustering using Renyi’s entropy. Proceedings of the International Joint Conference on Neural Networks; Portland, OR, USA: 20-24, July, 2003. p. 523-528. |
[14] | Hino, H.; Murata, N., A nonparametric clustering algorithm with a quantile-based likelihood estimator, Neural Comput, 26, 2074-2101 (2014) ·Zbl 07068965 ·doi:10.1162/NECO_a_00628 |
[15] | Slonim, N.; Atwal, GS; Tkaçik, G., Information-based clustering, Proc Natl Acad Sci USA, 102, 18297-18302 (2005) ·Zbl 1135.62054 ·doi:10.1073/pnas.0507432102 |
[16] | Yao, J.; Dash, M.; Tan, ST, Entropy-based fuzzy clustering and fuzzy modeling, Fuzzy Sets Syst, 113, 381-388 (2000) ·Zbl 1147.62348 ·doi:10.1016/S0165-0114(98)00038-4 |
[17] | Pham-Gia, T.; Turkkan, N.; Bekker, A., Bayesian analysis in the \(####\)-norm of the mixing proportion using discriminant analysis, Metrika, 64, 1-22 (2006) ·Zbl 1099.62026 ·doi:10.1007/s00184-006-0027-1 |
[18] | Pham-Gia, T.; Turkkan, N.; Van, TV., Statistical discriminant analysis analysis using the maximum function, Commun Stat Simul Comput, 37, 320-336 (2008) ·Zbl 1132.62049 ·doi:10.1080/03610910701790475 |
[19] | Pal, NR; Pal, SK., Entropy, a new definition and its applications, IEEE Trans Syst Man Cybernet, 21, 1260-1270 (1991) ·Zbl 1371.94579 ·doi:10.1109/21.120079 |
[20] | Pal, NR; Pal, SK., Some properties of the exponential entropy, Inform Sci, 66, 119-137 (1992) ·Zbl 0754.94003 ·doi:10.1016/0020-0255(92)90090-U |
[21] | Wu, KL; Yang, MS., Alternative c-means clustering algorithms, Pattern Recognit, 27, 2267-2278 (2002) ·Zbl 1006.68876 ·doi:10.1016/S0031-3203(01)00197-2 |
[22] | Yang, MS; Wu, KL., A similarity-based robust clustering method, IEEE Trans Pattern Anal Mach Intell, 26, 434-448 (2004) ·doi:10.1109/TPAMI.2004.1265860 |
[23] | Quenouille, M., Approximation tests of correlation in time series, J R Stat Soc B, 11, 18-84 (1949) ·Zbl 0035.09201 |
[24] | Kwedlo, W., A clustering method combining differential evolution with the K-means algorithm, Pattern Recognit Lett, 32, 1613-1621 (2011) ·doi:10.1016/j.patrec.2011.05.010 |
[25] | Nguyentrang, T.; Vovan, T., Fuzzy clustering of probability density functions, J Appl Stat, 44, 583-601 (2017) ·Zbl 1516.62507 ·doi:10.1080/02664763.2016.1177502 |
[26] | Gupta, RD; Kundu, D., Generalized exponential distributions, Aust NZ J Stat, 41, 173-188 (1999) ·Zbl 1007.62503 ·doi:10.1111/1467-842X.00072 |
[27] | Silverman, BW., Density estimation for statistics and data analysis (1986), New York: Chapman and Hall, New York ·Zbl 0617.62042 |
[28] | Cordelia, S.Constructing models for content-based image retrieval. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2001. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.