Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A jackknife entropy-based clustering algorithm for probability density functions.(English)Zbl 07493329

Summary: This paper proposes a new unsupervised learning algorithm called jackknife entropy-based clustering algorithm for grouping families of probability density functions (pdfs). The fitness function is used to choose the best threshold values of similarity in the proposed algorithm. We demonstrate the correctness and robustness of the proposed algorithm on a synthetic data set. Finally, we apply the algorithm to texture clustering.

MSC:

62-XX Statistics

Cite

References:

[1]Chen, JH; Hung, WL., An automatic clustering algorithm for probability density functions, J Stat Comput Simul, 85, 3047-3063 (2015) ·Zbl 1457.62197 ·doi:10.1080/00949655.2014.949715
[2]Chen, L, Shiu, SY.A new clustering algorithm based on self-updating process. JSM proceedings, statistical computing section; Salt Lake City, Utah; 2007. p. 2034-2038.
[3]Hung, WL; Chang-Chien, SJ; Yang, MS., Self-updating clustering algorithm for estimating the parameters in mixtures of von Mises distributions, J Appl Stat, 39, 2259-2274 (2012) ·Zbl 1514.62109 ·doi:10.1080/02664763.2012.706268
[4]Kohonen, T., The self-organizing map, Neurocomputing, 21, 1-6 (1998) ·Zbl 0917.68176 ·doi:10.1016/S0925-2312(98)00030-7
[5]Goh, A.; Vidal, R., Unsupervised Riemannian clustering of probability density functions, ECML PKDD, Part I, LNAI, 5211, 377-392 (2008)
[6]Montanari, A.; Calò, DG., Model-based clustering of probability density functions, Adv Data Anal Classif, 7, 301-319 (2013) ·Zbl 1273.62140 ·doi:10.1007/s11634-013-0140-8
[7]Van, TV; Pham-Gia, T., Clustering probability distributions, J Appl Stat, 37, 1891-1910 (2010) ·Zbl 1511.62142 ·doi:10.1080/02664760903186049
[8]Chen, JH; Chang, YC; Hung, WL., A robust automatic clustering algorithm for probability density functions with application to categorizing color images, Commun Stat Simul Comput, 47, 7, 2152-2168 (2017) ·Zbl 07550091 ·doi:10.1080/03610918.2017.1337137
[9]Chen, TL; Hsieh, DN; Hung, H., γ-SUP: A clustering algorithm for cryo-electron microscopy images of asymmetric particles, Ann Appl Stat, 8, 259-285 (2014) ·Zbl 1454.62527 ·doi:10.1214/13-AOAS680
[10]Caliński, T.; Harabasz, J., A dendrite method for cluster analysis, Commun Stat-theory Methods, 3, 1-27 (1974) ·Zbl 0273.62010 ·doi:10.1080/03610927408827101
[11]Masoud, H.; Saeed, J.; Hasheminejad, SMM., Dynamic clustering using combinatorial particle swarm optimization, Appl Intell, 38, 289-314 (2013) ·doi:10.1007/s10489-012-0373-9
[12]Gokcay, E.; Principe, JC., Information theoretic clustering, IEEE Trans Pattern Anal Mach Intell, 24, 158-171 (2002) ·doi:10.1109/34.982897
[13]Jenssen, R, Hild, KE, Erdogmus, D, et al. Clustering using Renyi’s entropy. Proceedings of the International Joint Conference on Neural Networks; Portland, OR, USA: 20-24, July, 2003. p. 523-528.
[14]Hino, H.; Murata, N., A nonparametric clustering algorithm with a quantile-based likelihood estimator, Neural Comput, 26, 2074-2101 (2014) ·Zbl 07068965 ·doi:10.1162/NECO_a_00628
[15]Slonim, N.; Atwal, GS; Tkaçik, G., Information-based clustering, Proc Natl Acad Sci USA, 102, 18297-18302 (2005) ·Zbl 1135.62054 ·doi:10.1073/pnas.0507432102
[16]Yao, J.; Dash, M.; Tan, ST, Entropy-based fuzzy clustering and fuzzy modeling, Fuzzy Sets Syst, 113, 381-388 (2000) ·Zbl 1147.62348 ·doi:10.1016/S0165-0114(98)00038-4
[17]Pham-Gia, T.; Turkkan, N.; Bekker, A., Bayesian analysis in the \(####\)-norm of the mixing proportion using discriminant analysis, Metrika, 64, 1-22 (2006) ·Zbl 1099.62026 ·doi:10.1007/s00184-006-0027-1
[18]Pham-Gia, T.; Turkkan, N.; Van, TV., Statistical discriminant analysis analysis using the maximum function, Commun Stat Simul Comput, 37, 320-336 (2008) ·Zbl 1132.62049 ·doi:10.1080/03610910701790475
[19]Pal, NR; Pal, SK., Entropy, a new definition and its applications, IEEE Trans Syst Man Cybernet, 21, 1260-1270 (1991) ·Zbl 1371.94579 ·doi:10.1109/21.120079
[20]Pal, NR; Pal, SK., Some properties of the exponential entropy, Inform Sci, 66, 119-137 (1992) ·Zbl 0754.94003 ·doi:10.1016/0020-0255(92)90090-U
[21]Wu, KL; Yang, MS., Alternative c-means clustering algorithms, Pattern Recognit, 27, 2267-2278 (2002) ·Zbl 1006.68876 ·doi:10.1016/S0031-3203(01)00197-2
[22]Yang, MS; Wu, KL., A similarity-based robust clustering method, IEEE Trans Pattern Anal Mach Intell, 26, 434-448 (2004) ·doi:10.1109/TPAMI.2004.1265860
[23]Quenouille, M., Approximation tests of correlation in time series, J R Stat Soc B, 11, 18-84 (1949) ·Zbl 0035.09201
[24]Kwedlo, W., A clustering method combining differential evolution with the K-means algorithm, Pattern Recognit Lett, 32, 1613-1621 (2011) ·doi:10.1016/j.patrec.2011.05.010
[25]Nguyentrang, T.; Vovan, T., Fuzzy clustering of probability density functions, J Appl Stat, 44, 583-601 (2017) ·Zbl 1516.62507 ·doi:10.1080/02664763.2016.1177502
[26]Gupta, RD; Kundu, D., Generalized exponential distributions, Aust NZ J Stat, 41, 173-188 (1999) ·Zbl 1007.62503 ·doi:10.1111/1467-842X.00072
[27]Silverman, BW., Density estimation for statistics and data analysis (1986), New York: Chapman and Hall, New York ·Zbl 0617.62042
[28]Cordelia, S.Constructing models for content-based image retrieval. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp