[1] | Hào, DN; Lesnic, D., The Cauchy problem for Laplace’s equation via the conjugate gradient method, IMA J Appl Math, 65, 199-217 (2000) ·Zbl 0967.35032 |
[2] | Tuan, NH; Binh, TT; Viet, TQ, On the Cauchy problem for semilinear elliptic equations, J Inverse Ill-Posed Probl, 24, 123-138 (2016) ·Zbl 1381.35237 |
[3] | Hào, DN., A noncharacteristic Cauchy problem for linear parabolic equations II: a variational method, Numer Funct Anal Optim, 13, 541-564 (1992) ·Zbl 0770.35076 |
[4] | Horáček, BM; Clements, JC., The inverse problem of electrocardiography: a solution in terms of single- and double-layer sources on the epicardial surface, Math Biosci, 144, 119-154 (1997) ·Zbl 0908.92014 |
[5] | Li, P-W; Fu, Z-J; Gu, Y., The generalized finite difference method for the inverse Cauchy problem in two-dimensional isotropic linear elasticity, Int J Solids Struct, 174-175, 69-84 (2019) |
[6] | Reinhardt, H-J; Hào, DN; Frohne, J., Numerical solution of inverse heat conduction problems in two spatial dimensions, J Inverse Ill-Posed Probl, 15, 181-198 (2007) ·Zbl 1126.35105 |
[7] | Berntsson, F.; Kozlov, VA; Mpinganzima, L., Iterative Tikhonov regularization for the Cauchy problem for the Helmholtz equation, Comput Math Appl, 73, 163-172 (2017) ·Zbl 1368.65215 |
[8] | Borachok, I.; Chapko, R.; Johansson, BT., A method of fundamental solutions for heat and wave propagation from lateral Cauchy data, Numer Algorithms (2021) ·Zbl 1552.65121 ·doi:10.1007/s11075-021-01120-x |
[9] | Chapko, R.; Johansson, BT., A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems, Appl Numer Math, 129, 104-119 (2018) ·Zbl 1393.65025 |
[10] | Bastay, G.; Kozlov, VA; Turesson, BO., Iterative methods for an inverse heat conduction problem, J Inverse Ill-Posed Probl, 9, 375-388 (2001) ·Zbl 0989.35138 |
[11] | Amirov, A.; Yamamoto, M., A timelike Cauchy problem and an inverse problem for general hyperbolic equations, Appl Math Lett, 21, 885-891 (2008) ·Zbl 1152.35512 |
[12] | Bécache, E.; Bourgeois, L.; Franceschini, L., Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1D case, Inverse Probl Imaging, 9, 971-1002 (2015) ·Zbl 1369.65115 |
[13] | Chapko, R.; Johansson, BT; Muzychuk, Y., Wave propagation from lateral Cauchy data using a boundary element method, Wave Motion, 91 (2019) ·Zbl 1524.35357 |
[14] | Klibanov, MV; Rakesh, Numerical solution of a time-like Cauchy problem for the wave equation, Math Methods Appl Sci, 15, 559-570 (1992) ·Zbl 0759.65061 |
[15] | Klibanov, MV., Carleman estimates for the regularization of ill-posed Cauchy problems, Appl Numer Math, 94, 46-74 (2015) ·Zbl 1325.65148 |
[16] | Klibanov, MV; Timonov, AA., Carleman estimates for coefficient inverse problems and numerical applications (2019), Berlin: De Gruyter, Berlin |
[17] | Weber, CF., Analysis and solution of the ill-posed inverse heat conduction problem, Int J Heat Mass Transf, 24, 1783-1792 (1981) ·Zbl 0468.76086 |
[18] | Clason, C.; Klibanov, MV., The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium, SIAM J Sci Comput, 30, 1-23 (2007) ·Zbl 1159.65346 |
[19] | Lesnic, D.; Hussein, SO; Johansson, BT., Inverse space-dependent force problems for the wave equation, J Comput Appl Math, 306, 10-39 (2016) ·Zbl 1382.65296 |
[20] | Nguyen, LH., An inverse space-dependent source problem for hyperbolic equations and the Lipschitz-like convergence of the quasi-reversibility method, Inverse Probl, 35 (2019) ·Zbl 1410.65359 |
[21] | Yang, C-Y., Boundary estimation of hyperbolic bio-heat conduction, Int J Heat Mass Transf, 54, 2506-2513 (2011) ·Zbl 1217.80126 |
[22] | Hsu, P-T., Estimating the boundary condition in a 3D inverse hyperbolic heat conduction problem, Appl Math Comput, 177, 453-464 (2006) ·Zbl 1096.65096 |
[23] | Lee, H-L; Lai, T-H; Chen, W-L, An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue, Appl Math Model, 37, 2630-2643 (2013) ·Zbl 1351.35264 |
[24] | Hào, DN; Thành, PX; Lesnic, D., A boundary element method for a multi-dimensional inverse heat conduction problem, Int J Comput Math, 89, 1540-1554 (2012) ·Zbl 1255.65169 |
[25] | Lasiecka, I, Triggiani, R. Recent advances in regularity of second-order hyperbolic mixed problems, and applications. In: Jones CKRT, Kirchgraber U, Walther HO, editors. Dynamics reported-expositions in dynamical systems. Vol. 3. Berlin: Springer-Verlag; 1994. p. 104-162. ·Zbl 0807.35080 |
[26] | Bennish, J., The mixed Dirichlet-Neumann-Cauchy problem for second order hyperbolic operators, J Math Anal Appl, 209, 243-254 (1997) ·Zbl 0880.35064 |
[27] | Isakov, V., Inverse problems for partial differential equations (2017), Berlin: Springer-Verlag, Berlin ·Zbl 1366.65087 |
[28] | Bociu, L.; Zolésio, J-P., A pseudo-extractor approach to hidden boundary regularity for the wave equation with mixed boundary conditions, J Differ Equ, 259, 5688-5708 (2015) ·Zbl 1329.35181 |
[29] | Lions, JL; Magenes, E., Non-homogeneous boundary value problems and applications, 1 (1972), Berlin: Springer-Verlag, Berlin ·Zbl 0223.35039 |
[30] | Ikawa, M., Hyperbolic partial differential equations and wave phenomena (2000), Providence (RI): American Mathematical Society, Providence (RI) ·Zbl 0948.35004 |
[31] | Abdul-Latif, AI; Diaz, JB., Dirichlet, Neumann, and mixed boundary value problems for the wave equation \(####\) for a rectangle, Appl Anal, 1, 1-12 (1971) ·Zbl 0224.35059 |
[32] | Fletcher, R.; Reeves, CM., Function minimization by conjugate gradients, Comput J, 7, 149-154 (1964) ·Zbl 0132.11701 |
[33] | Polak, E.; Ribiere, G., Note sur la convergence de methodes de directions conjuguees, Rev Fr Inf Rech Opér, 3, 35-43 (1969) ·Zbl 0174.48001 |
[34] | Hestenes, MR; Stiefel, E., Methods of conjugate gradients for solving linear systems, J Res Natl Bur Stand, 49, 409-436 (1952) ·Zbl 0048.09901 |
[35] | Dai, YH; Yuan, Y., A nonlinear conjugate gradient method with a strong global convergence property, SIAM J Optim, 10, 177-182 (1999) ·Zbl 0957.65061 |
[36] | Dai, W.; Nassar, R., A finite difference scheme for solving the heat transport equation at the microscale, Numer Methods Partial Differ Equ, 15, 697-708 (1999) ·Zbl 0945.65096 |
[37] | Saraç, Y, Zuazua, E. Sidewise profile control of 1-D waves. Preprint; 2021. arXiv: 2101.00473v3. |
[38] | Hào, DN; Thành, NT; Sahli, H., Splitting-based conjugate gradient method for a multi-dimensional linear inverse heat conduction problem, J Comput Appl Math, 232, 361-377 (2009) ·Zbl 1173.65058 |