Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Divisors of numbers and their continuations in the theory of partitions.(English)JFM 47.0117.01

Unter \(a_{n,k}\) versteht der Verf. die Summe \(\sum s_1 s_2 \dots s_k,\) erstreckt über sämtliche Lösungen der diophantischen Gleichung \[s_1 m_1 + s_2 m_2 + \cdots + s_k m_k = n,\] \(s_\nu, m_\nu\) positiv ganz und die \(m_\nu\) voneinander verschieden. Es wird für \[A_k=\sum_{n=1}^\infty a_{n,k}q^n\] die folgende symbolische Darstellung bewiesen: \[2^{2k}(2k+1)! A_k = (-1)^k \frac {1}{J_1} J(J^2 -1^2)(J^2 - 3^2) \dots (J^2 - (2k -1)^2),\] in welcher nach Entwicklung \(J^r\) durch \[J_r =1- 3^rq + 5^rq^3 - 7^rq^6 + \cdots,\] mit den Trigonalzahlen als Exponenten von \(q\) zu ersetzen ist. Ähnliche Darstellungen gelten für die weiteren vom Verf. ausführlich untersuchten Reihen \(B, C, D, E, F; B\) ist ähnlich definiert wie \(A = A_k,\) mit dem Unterschied, daßan Stelle von \(a_{n,k}\) \[b_{n,k} = \sum (- 1)^{s_1 +s_2 +\cdots +s_k +k}s_1s_2\dots s_k\] tritt. Bei den Reihen \(C, D\) werden nur solche Zerfällungen von \(n\) zugelassen, bei denen sämtliche \(m_\nu\) ungerade sind, bei \(E, F\) solche, die von der Form \(5r\pm 1,\) bei \(G, H\) solche, die von der Form \(5r\pm 2\) sind.

MSC:

11P81 Elementary theory of partitions
11D04 Linear Diophantine equations

Cite

Online Encyclopedia of Integer Sequences:

MacMahon’s generalized sum of divisors function.
MacMahon’s generalized sum of divisors function.
Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.
Generalized sum of divisors function.
Generalized sum of divisors function.
Number of partitions of n with exactly two part sizes.
Generalized divisor function. Number of partitions of n with exactly three part sizes.
Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.
Triangle of central factorial numbers |t(2n,2n-2k)| read by rows.
Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.
Number of odd divisors of n minus number of even divisors of n.
Triangle T(n,k), n >= 1, k >= 1, of generalized sum of divisors function, read by rows.
Triangle of generalized sum of divisors function, read by rows.
Generalized sum of divisors function: third diagonal of A060044.
Generalized sum of divisors function: third diagonal of A060047.
Triangle of generalized sum of divisors function, read by rows.
Triangle of generalized sum of divisors function, read by rows.
Triangle of generalized sum of divisors function, read by rows.
Generalized sum of divisors function: second diagonal of A060184.
Generalized sum of divisors function: third diagonal of A060184.
Triangle read by rows: Eulerian numbers of type B, T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (2*n - 2*k + 1)*T(n-1, k-1) + (2*k - 1)*T(n-1, k).
A column and diagonal of A060187.
A column and diagonal of A060187 (k=3).
A column and diagonal of A060187 (k=4).
Triangle read by rows: T(n, k) is the number of partitions of n having exactly k distinct parts, for 0 <= k <= n.
Triangle read by rows: T(n, k) = numerator(CF(n, k)) where CF(n, k) = n! * [x^k] [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x).
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp