Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Stability of Hardy-Littlewood-Sobolev inequalities with explicit lower bounds.(English)Zbl 1553.46033

Summary: In this paper, we establish the stability for the Hardy-Littlewood-Sobolev (HLS) inequalities with explicit lower bounds. By establishing the relation between the stability of HLS inequalities and the stability of fractional Sobolev inequalities, we also give the stability of the higher and fractional order Sobolev inequalities with the lower bounds. This extends to some extent the stability of the first order Sobolev inequalities with the explicit lower bounds established by Dolbeault, Esteban, Figalli, Frank and Loss in [J. Dolbeault et al., Camb. J. Math. 13, No. 2, 359–430 (2025;Zbl 08018035)] to the higher and fractional order case. Our proofs are based on the competing symmetries, the continuous Steiner symmetrization inequality for the HLS integral and the dual stability theory. As another application of the stability of the HLS inequality, we also establish the stability ofW. Beckner’s [Acta Math. Sin., Engl. Ser. 31, No. 1, 1–28 (2015;Zbl 1345.46027)]restrictive Sobolev inequalities of fractional order \(s\) with \(0 < s < \frac{n}{2}\) on the flat sub-manifold \(\mathbb{R}^{n - 1}\) and the sphere \(\mathbb{S}^{n - 1}\) with the explicit lower bound. When \(s = 1\), this implies the explicit lower bound for the stability of Escobar’s first order Sobolev trace inequality [J. F. Escobar, Indiana Univ. Math. J. 37, No. 3, 687–698 (1988;Zbl 0666.35014)] which has remained unknown in the literature.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals

Cite

References:

[1]Aubin, T., Problemes isoperimetriques et espaces de Sobolev, J. Differ. Geom., 11, 573-598, 1976 ·Zbl 0371.46011
[2]Bartsch, T.; Weth, T.; Willem, M., A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differ. Equ., 18, 253-268, 2003 ·Zbl 1059.31006
[3]Beckner, W., Weighted inequalities and Stein-Weiss potentials, Forum Math., 20, 587-606, 2008 ·Zbl 1149.42006
[4]Beckner, W., Functionals for multilinear fractional embedding, Acta Math. Sin. Engl. Ser., 31, 1-28, 2015 ·Zbl 1345.46027
[5]Bianchi, G.; Egnell, H., A note on the Sobolev inequality, J. Funct. Anal., 100, 1, 18-24, 1991 ·Zbl 0755.46014
[6]Brezis, H.; Lieb, E., Sobolev inequalities with remainder terms, J. Funct. Anal., 62, 73-86, 1985 ·Zbl 0577.46031
[7]Brock, F., Continuous Steiner-symmetrization, Math. Nachr., 172, 25-48, 1995 ·Zbl 0886.49010
[8]Brock, F., Continuous rearrangement and symmetry of solutions of elliptic problems, Proc. Indian Acad. Sci. Math. Sci., 110, 2, 157-204, 2000 ·Zbl 0965.49002
[9]Carlen, A. E.; Carrillo, J. A.; Loss, M., Hardy-Littlewood-Sobolev inequalities via fast diffusion flows, Proc. Natl. Acad. Sci., 107, 19696-19701, 2010 ·Zbl 1256.42028
[10]Carlen, E., Duality and stability for functional inequalities, Ann. Fac. Sci. Toulouse Math. (6), 26, 2, 319-350, 2017 ·Zbl 1387.46031
[11]Carlen, E.; Loss, M., Extremals of functionals with competing symmetries, J. Funct. Anal., 88, 2, 437-456, 1990 ·Zbl 0705.46016
[12]Chen, L.; Lu, G.; Tao, C., Existence of extremal functions for the Stein-Weiss inequalities on the Heisenberg group, J. Funct. Anal., 277, 1112-1138, 2019 ·Zbl 1429.26034
[13]Chen, L.; Lu, G.; Tang, H., Sharp stability of log-Sobolev and Moser-Onofri inequalities on the sphere, J. Funct. Anal., 2023 ·Zbl 1526.46021
[14]Chen, L.; Lu, G.; Tang, H., Optimal asymptotic lower bound for stability of fractional Sobolev inequality and the global stability of log-Sobolev inequality on the sphere
[15]Chen, L.; Lu, G.; Tang, H., Optimal stability of Hardy-Littlewood-Sobolev and Sobolev inequalities of arbitrary orders with dimension-dependent constants
[16]Chen, S.; Frank, R.; Weth, T., Remainder terms in the fractional Sobolev inequality, Indiana Univ. Math. J., 62, 4, 1381-1397, 2013 ·Zbl 1296.46032
[17]De Nitti, N.; König, T., Critical functions and blow-up asymptotics for the fractional Brezis-Nirenberg problem in low dimension, 2022
[18]Dolbeault, J.; Esteban, M.; Figalli, A.; Frank, R.; Loss, M., Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence, 2022
[19]Escobar, J., Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., 37, 687-698, 1988 ·Zbl 0666.35014
[20]Esposito, P., On some conjectures proposed by Haïm Brezis, Nonlinear Anal., 56, 5, 751-759, 2004 ·Zbl 1134.35045
[21]Frank, R. L.; Lieb, E. H., Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differ. Equ., 39, 85-99, 2010 ·Zbl 1204.39024
[22]Frank, R. L.; Lieb, E. H., Sharp constants in several inequalities on the Heisenberg group, Ann. Math. (2), 176, 1, 349-381, 2012 ·Zbl 1252.42023
[23]Frank, R. L.; Lieb, E. H., A new rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, (Brown, B. M.E. A., Spectral Theory, Function Spaces and Inequalities. Spectral Theory, Function Spaces and Inequalities, Oper. Theory Adv. Appl., vol. 219, 2012, Birkhauser: Birkhauser Basel), 55-67 ·Zbl 1297.39023
[24]Han, X., Existence of maximizers for Hardy-Littlewood-Sobolev inequalities on the Heisenberg group, Indiana Univ. Math. J., 62, 737-751, 2013 ·Zbl 1299.39020
[25]Han, X.; Lu, G.; Zhu, J., Hardy-Littlewood-Sobolev and Stein-Weiss inequalities and integral systems on the Heisenberg group, Nonlinear Anal., 75, 11, 4296-4314, 2012 ·Zbl 1309.42032
[26]Hardy, G. H.; Littlewood, J. E., Some properties of fractional integrals, Math. Z., 27, 565-606, 1928 ·JFM 54.0275.05
[27]König, T., On the sharp constant in the Bianchi-Egnell stability inequality ·Zbl 1532.46030
[28]Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118, 349-374, 1983 ·Zbl 0527.42011
[29]Lieb, E. H.; Loss, M., Analysis, Graduate Studies in Mathematics, vol. 14, 2001, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0966.26002
[30]Lu, G.; Wei, J., On a Sobolev inequality with remainder terms, Proc. Am. Math. Soc., 128, 75-84, 1999 ·Zbl 0961.35100
[31]Nazaret, B., Best constant in Sobolev trace inequalities on the half-space, Nonlinear Anal., 65, 1977-1985, 2006 ·Zbl 1119.26020
[32]Rey, O., The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89, 1-52, 1990 ·Zbl 0786.35059
[33]Sobolev, S. L., On a theorem in functional analysis, Mat. Sb., 4, 471-497, 1938, (in Russian) ·JFM 64.1100.02
[34]Stein, E.; Weiss, G., Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7, 503-514, 1958 ·Zbl 0082.27201
[35]Talenti, G., Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372, 1976 ·Zbl 0353.46018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp