[1] | An, J., 2-dimensional badly approximable vectors and Schmidt’s game. Duke Math. J., 2, 267-284 (2016), MR 3457674 ·Zbl 1410.11095 |
[2] | Badziahin, D.; Harrap, S.; Nesharim, E.; Simmons, D., Schmidt games and Cantor winning sets (2018), preprint |
[3] | Bekka, M. B.; Mayer, M., Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces. London Mathematical Society Lecture Note Series (2000), Cambridge University Press: Cambridge University Press Cambridge, MR 1781937 ·Zbl 0961.37001 |
[4] | Beresnevich, V.; Guan, L.; Marnat, A.; Ramírez, F.; Velani, S., Dirichlet is not just bad and singular. Adv. Math. (2022), MR 4395950 ·Zbl 1491.11068 |
[5] | Beresnevich, V.; Velani, S., Arbeitsgemeinschaft: Diophantine Approximation, Fractal Geometry and Dynamics. Oberwolfach Rep., 4, 2749-2792 (2016), Abstracts from the Working Session held October 9-14, 2016, Organized by Victor Beresnevich and Sanju Velani. MR 3757056 ·Zbl 1390.00072 |
[6] | Bernik, V. I.; Dodson, M. M., Metric Diophantine Approximation on Manifolds. Cambridge Tracts in Mathematics (1999), Cambridge University Press: Cambridge University Press Cambridge, MR 1727177 ·Zbl 0933.11040 |
[7] | Besicovitch, A. S., Sets of fractional dimensions (IV): on rational approximation to real numbers. J. Lond. Math. Soc., 2, 126-131 (1934), MR 1574327 ·Zbl 0009.05301 |
[8] | Bishop, C. J.; Peres, Y., Fractals in Probability and Analysis. Cambridge Studies in Advanced Mathematics (2017), Cambridge University Press: Cambridge University Press Cambridge, MR 3616046 ·Zbl 1390.28012 |
[9] | Bovey, J.; Dodson, M., The Hausdorff dimension of systems of linear forms. Acta Arith., 4, 337-358 (1986) ·Zbl 0534.10025 |
[10] | Broderick, R.; Fishman, L.; Kleinbock, D.; Reich, A.; Weiss, B., The set of badly approximable vectors is strongly \(C^1\) incompressible. Math. Proc. Camb. Philos. Soc., 2, 319-339 (2012), MR 2981929 ·Zbl 1316.11064 |
[11] | Bugeaud, Y., Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics (2004), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1055.11002 |
[12] | Bugeaud, Y.; Cheung, Y.; Chevallier, N., Hausdorff dimension and uniform exponents in dimension two. Math. Proc. Camb. Philos. Soc., 2, 249-284 (2019), MR 3991371 ·Zbl 1450.11081 |
[13] | Bugeaud, Y.; Laurent, M., On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J., 4, 747-766 (2005), 972. MR 2266457 ·Zbl 1119.11039 |
[14] | Cassels, J. W.S., An Introduction to Diophantine Approximation. Cambridge Tracts in Mathematics and Mathematical Physics (1957), Cambridge University Press: Cambridge University Press New York ·Zbl 0077.04801 |
[15] | Cassels, J. W.S., An Introduction to the Geometry of Numbers. Corrected Reprint of the 1971 Edition. Classics in Mathematics (1997), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0866.11041 |
[16] | Chaika, J.; Cheung, Y.; Masur, H., Winning games for bounded geodesics in moduli spaces of quadratic differentials. J. Mod. Dyn., 3, 395-427 (2013), MR 3296560 ·Zbl 1284.30034 |
[17] | Cheung, Y., Hausdorff dimension of the set of singular pairs. Ann. Math. (2), 1, 127-167 (2011), MR 2753601 ·Zbl 1241.11075 |
[18] | Cheung, Y.; Chevallier, N., Hausdorff dimension of singular vectors. Duke Math. J., 12, 2273-2329 (2016), MR 3544282 ·Zbl 1358.11078 |
[19] | Cutler, C. D., Strong and weak duality principles for fractal dimension in Euclidean space. Math. Proc. Camb. Philos. Soc., 3, 393-410 (1995), MR 1342960 ·Zbl 0866.28004 |
[20] | Dani, S. G., Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math., 55-89 (1985), MR 794799 ·Zbl 0578.22012 |
[21] | Dani, S. G., On badly approximable numbers, Schmidt games and bounded orbits of flows, 69-86, MR 1043706 ·Zbl 0705.11042 |
[22] | Das, T.; Fishman, L.; Simmons, D.; Urbański, M., A variational principle in the parametric geometry of numbers, with applications to metric Diophantine approximation. C. R. Math. Acad. Sci. Paris, 8, 835-846 (2017), MR 3693502 ·Zbl 1427.11072 |
[23] | Davenport, H.; Schmidt, W. M., Dirichlet’s theorem on Diophantine approximation. II. Acta Arith., 413-424 (1969/1970), MR 0279040 ·Zbl 0201.05501 |
[24] | Dirichlet, P. G.L., Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einige Anwendungen auf die Theorie der Zahlen, 93-95 (1842), S.-B. Preuss. Akad. Wiss, (in German) |
[25] | Dodson, M. M.; Kristensen, S., Hausdorff dimension and Diophantine approximation, 305-347, MR 2112110 ·Zbl 1196.11104 |
[26] | Einsiedler, M.; Ward, T., Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics (2011), Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London, MR 2723325 ·Zbl 1206.37001 |
[27] | Eskin, A.; Margulis, G. A.; Mozes, S., Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Ann. Math. (2), 1, 93-141 (1998), MR 1609447 ·Zbl 0906.11035 |
[28] | Falconer, K., Techniques in Fractal Geometry (1997), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, MR 1449135 ·Zbl 0869.28003 |
[29] | Falconer, K., Fractal Geometry, Mathematical Foundations and Applications (2014), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, MR 3236784 ·Zbl 1285.28011 |
[30] | Fishman, L.; Ly, T.; Simmons, D., Determinacy and indeterminacy of games played on complete metric spaces. Bull. Aust. Math. Soc., 339-351 (2014) ·Zbl 1302.91042 |
[31] | Fishman, L.; Simmons, D.; Urbański, M., Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces. Mem. Am. Math. Soc. (2018), v+137. MR 3826896 ·Zbl 1442.11001 |
[32] | German, O. N., On Diophantine exponents and Khintchine’s transference principle. Mosc. J. Comb. Number Theory, 2, 22-51 (2012), MR 2988525 ·Zbl 1294.11116 |
[33] | Guan, L.; Shi, R., Hausdorff dimension of divergent trajectories on homogeneous spaces. Compos. Math., 2, 340-359 (2020), MR 4044467 ·Zbl 1436.37040 |
[34] | Hausdorff, F., Dimension und äußeres Maß. Math. Ann., 1-2, 157-179 (1918), MR 1511917 ·JFM 46.0292.01 |
[35] | Helfrich, B., Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Theor. Comput. Sci., 2-3, 125-139 (1985), (1986). MR 847673 ·Zbl 0601.68034 |
[36] | Jarník, V., Zur metrischen Theorie der diophantischen Approximationen. Pr. Mat.-Fiz., 91-106 (1928), (in German) |
[37] | Jarník, V., Diophantische Approximationen und Hausdorffsches Mass. Mat. Sb., 371-382 (1929), (in German) ·JFM 55.0719.01 |
[38] | Jarník, V., Zum Khintchineschen “Übertragungssatz”. Trav. Inst. Math. Tbil., 193-212 (1938), (in German) ·Zbl 0019.10602 |
[39] | Kadyrov, S.; Kleinbock, D.; Lindenstrauss, E.; Margulis, G. A., Singular systems of linear forms and non-escape of mass in the space of lattices. J. Anal. Math., 253-277 (2017), MR 3736492 ·Zbl 1385.37005 |
[40] | Keita, A., On a conjecture of Schmidt for the parametric geometry of numbers. Mosc. J. Comb. Number Theory, 2-3, 166-176 (2016) ·Zbl 1370.11078 |
[41] | Khinchin, A., Über eine Klasse linearer diophantischer Approximationen. Rend. Circ. Mat. Palermo, 170-195 (1926), (in German) ·JFM 52.0183.01 |
[42] | Khinchin, A., Über singuläre Zahlensysteme. Compos. Math., 424-431 (1937), MR 1556985 ·JFM 63.0150.03 |
[43] | Khinchin, A., Regular systems of linear equations and a general problem of Čebyšev. Izv. Akad. Nauk SSSR, Ser. Mat., 249-258 (1948), MR 0025513 ·Zbl 0033.25103 |
[44] | Kim, D. H.; Liao, L., Dirichlet uniformly well-approximated numbers. Int. Math. Res. Not., 24, 7691-7732 (2019), MR 4043832 ·Zbl 1475.11141 |
[45] | Kleinbock, D. Ya.; Margulis, G. A., Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. Math. (2), 1, 339-360 (1998), MR 1652916 ·Zbl 0922.11061 |
[46] | Kleinbock, D. Ya.; Weiss, B., Modified Schmidt games and Diophantine approximation with weights. Adv. Math., 4, 1276-1298 (2010), MR 2581371 ·Zbl 1213.11148 |
[47] | Laurent, M., On inhomogeneous Diophantine approximations and the Hausdorff dimension. Fundam. Prikl. Mat., 5, 93-101 (2010), MR 2804895 |
[48] | Liao, L.; Shi, R.; Solan, O.; Tamam, N., Hausdorff dimension of weighted singular vectors in \(\mathbb{R}^2\). J. Eur. Math. Soc., 3, 833-875 (2020), MR 4055990 ·Zbl 1433.11084 |
[49] | Martin, D. A., A purely inductive proof of Borel determinacy, 303-308, MR 791065 ·Zbl 0614.03048 |
[50] | Mauldin, R. D.; Szarek, T.; Urbański, M., Graph directed Markov systems on Hilbert spaces. Math. Proc. Camb. Philos. Soc., 2, 455-488 (2009), MR 2525938 ·Zbl 1177.37054 |
[51] | McMullen, C. T., Winning sets, quasiconformal maps and Diophantine approximation. Geom. Funct. Anal., 3, 726-740 (2010), MR 2720230 ·Zbl 1242.11054 |
[52] | Morris, I. D., A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory. Adv. Math., 6, 3425-3445 (2010), MR 2729011 ·Zbl 1205.15032 |
[53] | Moshchevitin, N. G., Singular Diophantine systems of A.Ya. Khinchin and their application. Usp. Mat. Nauk, 3(393), 43-126 (2010), MR 2682720 |
[54] | Moshchevitin, N., Proof of W.M. Schmidt’s conjecture concerning successive minima of a lattice. J. Lond. Math. Soc. (2), 1, 129-151 (2012), MR 2959298 ·Zbl 1350.11073 |
[55] | Roy, D., On Schmidt and Summerer parametric geometry of numbers. Ann. Math. (2), 2, 739-786 (2015), MR 3418530 ·Zbl 1328.11076 |
[56] | Roy, D., Spectrum of the exponents of best rational approximation. Math. Z., 1-2, 143-155 (2016), MR 3489062 ·Zbl 1338.11061 |
[57] | Roy, D.; Waldschmidt, M., Parametric geometry of numbers in function fields. Mathematika, 3, 1114-1135 (2017), MR 3731317 ·Zbl 1428.11126 |
[58] | Schleischitz, J., Diophantine approximation and special Liouville numbers. Commun. Math., 1, 39-76 (2013), MR 3067121 ·Zbl 1284.11098 |
[59] | Schmidt, W. M., On badly approximable numbers and certain games. Trans. Am. Math. Soc., 178-199 (1966), MR 195595 ·Zbl 0232.10029 |
[60] | Schmidt, W. M., Badly approximable systems of linear forms. J. Number Theory, 139-154 (1969), MR 248090 ·Zbl 0172.06401 |
[61] | Schmidt, W. M., Diophantine Approximation. Lecture Notes in Mathematics (1980), Springer: Springer Berlin, MR 568710 ·Zbl 0421.10019 |
[62] | Schmidt, W. M., Open problems in Diophantine approximation, 271-287, MR 702204 ·Zbl 0529.10032 |
[63] | Schmidt, W. M.; Summerer, L., Diophantine approximation and parametric geometry of numbers. Monatshefte Math., 1, 51-104 (2013), MR 3016519 ·Zbl 1264.11056 |
[64] | Simmons, D., On interpreting Patterson-Sullivan measures of geometrically finite groups as Hausdorff and packing measures. Ergod. Theory Dyn. Syst., 8, 2675-2686 (2016), MR 3570029 ·Zbl 1455.37034 |
[65] | Solan, O. N., Parametric geometry of numbers with general flow (2021), arXiv preprint |
[66] | Starkov, A., Dynamical Systems on Homogeneous Spaces. Translations of Mathematical Monographs (2000), American Mathematical Society: American Mathematical Society Providence, RI, Translated from the 1999 Russian original by the author. MR 1746847 ·Zbl 1027.93500 |
[67] | Sullivan, D. P., Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math., 3-4, 259-277 (1984), MR 766265 ·Zbl 0566.58022 |
[68] | Tricot, C., Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc., 1, 57-74 (1982), MR 633256 ·Zbl 0483.28010 |
[69] | Yomdin, Y.; Comte, G., Tame Geometry with Application in Smooth Analysis. Lecture Notes in Mathematics (2004), Springer-Verlag: Springer-Verlag Berlin, MR 2041428 ·Zbl 1076.14079 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.