Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A variational principle in the parametric geometry of numbers.(English)Zbl 1553.11065

We extend the parametric geometry of numbers (initiated byW. M. Schmidt andL. Summerer [Monatsh. Math. 169, No. 1, 51–104 (2013;Zbl 1264.11056)], and deepened byD. Roy [Ann. Math. (2) 182, No. 2, 739–786 (2015;Zbl 1328.11076)]) to Diophantine approximation for systems of \(m\) linear forms in \(n\) variables, and establish a new connection to the metric theory via a variational principle that computes fractal dimensions of a variety of sets of number-theoretic interest. The proof of our variational principle relies on two novel ingredients: a variant of Schmidt’s game capable of computing the Hausdorff and packing dimensions of any set, and the notion oftemplates, which generalize Roy’srigid systems. We use our variational principle to compute the Hausdorff and packing dimensions of the set of singular systems of linear forms and show they are equal, resolving a conjecture ofS. Kadyrov et al. [J. Anal. Math. 133, 253–277 (2017;Zbl 1385.37005)], as well as a question ofY. Bugeaud et al. [Math. Proc. Camb. Philos. Soc. 167, No. 2, 249–284 (2019;Zbl 1450.11081)]. As a corollary of Dani’s correspondence principle [S. G. Dani, J. Reine Angew. Math. 359, 55–89 (1985;Zbl 0578.22012)], the divergent trajectories of a one-parameter diagonal action on the space of unimodular lattices with exactly two Lyapunov exponents with opposite signs have equal Hausdorff and packing dimensions. Other applications include quantitative strengthenings of theorems due toY. Cheung [Ann. Math. (2) 173, No. 1, 127–167 (2011;Zbl 1241.11075)] andN. G. Moshchevitin [J. Lond. Math. Soc., II. Ser. 86, No. 1, 129–151 (2012;Zbl 1350.11073)], which originally resolved conjectures due toA. N. Starkov [Dynamical systems on homogeneous spaces. Providence, RI: American Mathematical Society (AMS) (1999;Zbl 1143.37300)] andW. M. Schmidt [Prog. Math. 31, 271–287 (1983;Zbl 0529.10032)]respectively; as well as dimension formulas with respect to the uniform exponent of irrationality for simultaneous and dual approximation in two dimensions, completing partial results due to Baker, Bugeaud, Cheung, Chevallier, Dodson, Laurent and Rynne (1977–2016).
See [Math. Proc. Camb. Philos. Soc. 167, No. 2, 249–284 (2019;Zbl 1450.11081)] for a detailed history of the prior results.

MSC:

11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
11J13 Simultaneous homogeneous approximation, linear forms
28A80 Fractals
28A78 Hausdorff and packing measures
37A15 General groups of measure-preserving transformations and dynamical systems
37A17 Homogeneous flows
91A05 2-person games
91A44 Games involving topology, set theory, or logic

Cite

References:

[1]An, J., 2-dimensional badly approximable vectors and Schmidt’s game. Duke Math. J., 2, 267-284 (2016), MR 3457674 ·Zbl 1410.11095
[2]Badziahin, D.; Harrap, S.; Nesharim, E.; Simmons, D., Schmidt games and Cantor winning sets (2018), preprint
[3]Bekka, M. B.; Mayer, M., Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces. London Mathematical Society Lecture Note Series (2000), Cambridge University Press: Cambridge University Press Cambridge, MR 1781937 ·Zbl 0961.37001
[4]Beresnevich, V.; Guan, L.; Marnat, A.; Ramírez, F.; Velani, S., Dirichlet is not just bad and singular. Adv. Math. (2022), MR 4395950 ·Zbl 1491.11068
[5]Beresnevich, V.; Velani, S., Arbeitsgemeinschaft: Diophantine Approximation, Fractal Geometry and Dynamics. Oberwolfach Rep., 4, 2749-2792 (2016), Abstracts from the Working Session held October 9-14, 2016, Organized by Victor Beresnevich and Sanju Velani. MR 3757056 ·Zbl 1390.00072
[6]Bernik, V. I.; Dodson, M. M., Metric Diophantine Approximation on Manifolds. Cambridge Tracts in Mathematics (1999), Cambridge University Press: Cambridge University Press Cambridge, MR 1727177 ·Zbl 0933.11040
[7]Besicovitch, A. S., Sets of fractional dimensions (IV): on rational approximation to real numbers. J. Lond. Math. Soc., 2, 126-131 (1934), MR 1574327 ·Zbl 0009.05301
[8]Bishop, C. J.; Peres, Y., Fractals in Probability and Analysis. Cambridge Studies in Advanced Mathematics (2017), Cambridge University Press: Cambridge University Press Cambridge, MR 3616046 ·Zbl 1390.28012
[9]Bovey, J.; Dodson, M., The Hausdorff dimension of systems of linear forms. Acta Arith., 4, 337-358 (1986) ·Zbl 0534.10025
[10]Broderick, R.; Fishman, L.; Kleinbock, D.; Reich, A.; Weiss, B., The set of badly approximable vectors is strongly \(C^1\) incompressible. Math. Proc. Camb. Philos. Soc., 2, 319-339 (2012), MR 2981929 ·Zbl 1316.11064
[11]Bugeaud, Y., Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics (2004), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1055.11002
[12]Bugeaud, Y.; Cheung, Y.; Chevallier, N., Hausdorff dimension and uniform exponents in dimension two. Math. Proc. Camb. Philos. Soc., 2, 249-284 (2019), MR 3991371 ·Zbl 1450.11081
[13]Bugeaud, Y.; Laurent, M., On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J., 4, 747-766 (2005), 972. MR 2266457 ·Zbl 1119.11039
[14]Cassels, J. W.S., An Introduction to Diophantine Approximation. Cambridge Tracts in Mathematics and Mathematical Physics (1957), Cambridge University Press: Cambridge University Press New York ·Zbl 0077.04801
[15]Cassels, J. W.S., An Introduction to the Geometry of Numbers. Corrected Reprint of the 1971 Edition. Classics in Mathematics (1997), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0866.11041
[16]Chaika, J.; Cheung, Y.; Masur, H., Winning games for bounded geodesics in moduli spaces of quadratic differentials. J. Mod. Dyn., 3, 395-427 (2013), MR 3296560 ·Zbl 1284.30034
[17]Cheung, Y., Hausdorff dimension of the set of singular pairs. Ann. Math. (2), 1, 127-167 (2011), MR 2753601 ·Zbl 1241.11075
[18]Cheung, Y.; Chevallier, N., Hausdorff dimension of singular vectors. Duke Math. J., 12, 2273-2329 (2016), MR 3544282 ·Zbl 1358.11078
[19]Cutler, C. D., Strong and weak duality principles for fractal dimension in Euclidean space. Math. Proc. Camb. Philos. Soc., 3, 393-410 (1995), MR 1342960 ·Zbl 0866.28004
[20]Dani, S. G., Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math., 55-89 (1985), MR 794799 ·Zbl 0578.22012
[21]Dani, S. G., On badly approximable numbers, Schmidt games and bounded orbits of flows, 69-86, MR 1043706 ·Zbl 0705.11042
[22]Das, T.; Fishman, L.; Simmons, D.; Urbański, M., A variational principle in the parametric geometry of numbers, with applications to metric Diophantine approximation. C. R. Math. Acad. Sci. Paris, 8, 835-846 (2017), MR 3693502 ·Zbl 1427.11072
[23]Davenport, H.; Schmidt, W. M., Dirichlet’s theorem on Diophantine approximation. II. Acta Arith., 413-424 (1969/1970), MR 0279040 ·Zbl 0201.05501
[24]Dirichlet, P. G.L., Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einige Anwendungen auf die Theorie der Zahlen, 93-95 (1842), S.-B. Preuss. Akad. Wiss, (in German)
[25]Dodson, M. M.; Kristensen, S., Hausdorff dimension and Diophantine approximation, 305-347, MR 2112110 ·Zbl 1196.11104
[26]Einsiedler, M.; Ward, T., Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics (2011), Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London, MR 2723325 ·Zbl 1206.37001
[27]Eskin, A.; Margulis, G. A.; Mozes, S., Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Ann. Math. (2), 1, 93-141 (1998), MR 1609447 ·Zbl 0906.11035
[28]Falconer, K., Techniques in Fractal Geometry (1997), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, MR 1449135 ·Zbl 0869.28003
[29]Falconer, K., Fractal Geometry, Mathematical Foundations and Applications (2014), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, MR 3236784 ·Zbl 1285.28011
[30]Fishman, L.; Ly, T.; Simmons, D., Determinacy and indeterminacy of games played on complete metric spaces. Bull. Aust. Math. Soc., 339-351 (2014) ·Zbl 1302.91042
[31]Fishman, L.; Simmons, D.; Urbański, M., Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces. Mem. Am. Math. Soc. (2018), v+137. MR 3826896 ·Zbl 1442.11001
[32]German, O. N., On Diophantine exponents and Khintchine’s transference principle. Mosc. J. Comb. Number Theory, 2, 22-51 (2012), MR 2988525 ·Zbl 1294.11116
[33]Guan, L.; Shi, R., Hausdorff dimension of divergent trajectories on homogeneous spaces. Compos. Math., 2, 340-359 (2020), MR 4044467 ·Zbl 1436.37040
[34]Hausdorff, F., Dimension und äußeres Maß. Math. Ann., 1-2, 157-179 (1918), MR 1511917 ·JFM 46.0292.01
[35]Helfrich, B., Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Theor. Comput. Sci., 2-3, 125-139 (1985), (1986). MR 847673 ·Zbl 0601.68034
[36]Jarník, V., Zur metrischen Theorie der diophantischen Approximationen. Pr. Mat.-Fiz., 91-106 (1928), (in German)
[37]Jarník, V., Diophantische Approximationen und Hausdorffsches Mass. Mat. Sb., 371-382 (1929), (in German) ·JFM 55.0719.01
[38]Jarník, V., Zum Khintchineschen “Übertragungssatz”. Trav. Inst. Math. Tbil., 193-212 (1938), (in German) ·Zbl 0019.10602
[39]Kadyrov, S.; Kleinbock, D.; Lindenstrauss, E.; Margulis, G. A., Singular systems of linear forms and non-escape of mass in the space of lattices. J. Anal. Math., 253-277 (2017), MR 3736492 ·Zbl 1385.37005
[40]Keita, A., On a conjecture of Schmidt for the parametric geometry of numbers. Mosc. J. Comb. Number Theory, 2-3, 166-176 (2016) ·Zbl 1370.11078
[41]Khinchin, A., Über eine Klasse linearer diophantischer Approximationen. Rend. Circ. Mat. Palermo, 170-195 (1926), (in German) ·JFM 52.0183.01
[42]Khinchin, A., Über singuläre Zahlensysteme. Compos. Math., 424-431 (1937), MR 1556985 ·JFM 63.0150.03
[43]Khinchin, A., Regular systems of linear equations and a general problem of Čebyšev. Izv. Akad. Nauk SSSR, Ser. Mat., 249-258 (1948), MR 0025513 ·Zbl 0033.25103
[44]Kim, D. H.; Liao, L., Dirichlet uniformly well-approximated numbers. Int. Math. Res. Not., 24, 7691-7732 (2019), MR 4043832 ·Zbl 1475.11141
[45]Kleinbock, D. Ya.; Margulis, G. A., Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. Math. (2), 1, 339-360 (1998), MR 1652916 ·Zbl 0922.11061
[46]Kleinbock, D. Ya.; Weiss, B., Modified Schmidt games and Diophantine approximation with weights. Adv. Math., 4, 1276-1298 (2010), MR 2581371 ·Zbl 1213.11148
[47]Laurent, M., On inhomogeneous Diophantine approximations and the Hausdorff dimension. Fundam. Prikl. Mat., 5, 93-101 (2010), MR 2804895
[48]Liao, L.; Shi, R.; Solan, O.; Tamam, N., Hausdorff dimension of weighted singular vectors in \(\mathbb{R}^2\). J. Eur. Math. Soc., 3, 833-875 (2020), MR 4055990 ·Zbl 1433.11084
[49]Martin, D. A., A purely inductive proof of Borel determinacy, 303-308, MR 791065 ·Zbl 0614.03048
[50]Mauldin, R. D.; Szarek, T.; Urbański, M., Graph directed Markov systems on Hilbert spaces. Math. Proc. Camb. Philos. Soc., 2, 455-488 (2009), MR 2525938 ·Zbl 1177.37054
[51]McMullen, C. T., Winning sets, quasiconformal maps and Diophantine approximation. Geom. Funct. Anal., 3, 726-740 (2010), MR 2720230 ·Zbl 1242.11054
[52]Morris, I. D., A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory. Adv. Math., 6, 3425-3445 (2010), MR 2729011 ·Zbl 1205.15032
[53]Moshchevitin, N. G., Singular Diophantine systems of A.Ya. Khinchin and their application. Usp. Mat. Nauk, 3(393), 43-126 (2010), MR 2682720
[54]Moshchevitin, N., Proof of W.M. Schmidt’s conjecture concerning successive minima of a lattice. J. Lond. Math. Soc. (2), 1, 129-151 (2012), MR 2959298 ·Zbl 1350.11073
[55]Roy, D., On Schmidt and Summerer parametric geometry of numbers. Ann. Math. (2), 2, 739-786 (2015), MR 3418530 ·Zbl 1328.11076
[56]Roy, D., Spectrum of the exponents of best rational approximation. Math. Z., 1-2, 143-155 (2016), MR 3489062 ·Zbl 1338.11061
[57]Roy, D.; Waldschmidt, M., Parametric geometry of numbers in function fields. Mathematika, 3, 1114-1135 (2017), MR 3731317 ·Zbl 1428.11126
[58]Schleischitz, J., Diophantine approximation and special Liouville numbers. Commun. Math., 1, 39-76 (2013), MR 3067121 ·Zbl 1284.11098
[59]Schmidt, W. M., On badly approximable numbers and certain games. Trans. Am. Math. Soc., 178-199 (1966), MR 195595 ·Zbl 0232.10029
[60]Schmidt, W. M., Badly approximable systems of linear forms. J. Number Theory, 139-154 (1969), MR 248090 ·Zbl 0172.06401
[61]Schmidt, W. M., Diophantine Approximation. Lecture Notes in Mathematics (1980), Springer: Springer Berlin, MR 568710 ·Zbl 0421.10019
[62]Schmidt, W. M., Open problems in Diophantine approximation, 271-287, MR 702204 ·Zbl 0529.10032
[63]Schmidt, W. M.; Summerer, L., Diophantine approximation and parametric geometry of numbers. Monatshefte Math., 1, 51-104 (2013), MR 3016519 ·Zbl 1264.11056
[64]Simmons, D., On interpreting Patterson-Sullivan measures of geometrically finite groups as Hausdorff and packing measures. Ergod. Theory Dyn. Syst., 8, 2675-2686 (2016), MR 3570029 ·Zbl 1455.37034
[65]Solan, O. N., Parametric geometry of numbers with general flow (2021), arXiv preprint
[66]Starkov, A., Dynamical Systems on Homogeneous Spaces. Translations of Mathematical Monographs (2000), American Mathematical Society: American Mathematical Society Providence, RI, Translated from the 1999 Russian original by the author. MR 1746847 ·Zbl 1027.93500
[67]Sullivan, D. P., Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math., 3-4, 259-277 (1984), MR 766265 ·Zbl 0566.58022
[68]Tricot, C., Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc., 1, 57-74 (1982), MR 633256 ·Zbl 0483.28010
[69]Yomdin, Y.; Comte, G., Tame Geometry with Application in Smooth Analysis. Lecture Notes in Mathematics (2004), Springer-Verlag: Springer-Verlag Berlin, MR 2041428 ·Zbl 1076.14079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp