Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Optimal Diophantine exponents for \(\mathrm{SL}(n)\).(English)Zbl 1553.11064

The classical notion of a Diophantine exponent, \(\kappa\), can be extended and generalised in many ways. In recent work,A. Ghosh et al. [J. Reine Angew. Math. 745, 155–188 (2018;Zbl 1405.37012)] considered the very general setting of a lattice \(\Gamma\) in a connected Lie (or algebraic) group \(G\), acting on a homogeneous space \(G/H\), where \(H\) is a subgroup of \(G\). When a condition called temperedness is satisfied, they were able to obtain the optimal Diophantine exponent, \(\kappa=1\).
Here the authors consider the important case when \(\Gamma=\mathrm{SL}_{n} \left( {\mathbb Z}[1/p] \right)\), \(G=\mathrm{SL}_{n} \left( {\mathbb R} \right) \times \mathrm{SL}_{n} \left( {\mathbb Q}_{p} \right)\) and \(H=\mathrm{SO}_{n} \left( {\mathbb R} \right) \times \mathrm{SL}_{n} \left( {\mathbb Q}_{p} \right)\). As in the classical setting, where \({\mathbb Q}\) is dense in \({\mathbb R}\), it is known that \(\mathrm{SL}_{n} \left( {\mathbb Z}[1/p] \right)\) is dense in \(\mathrm{SL}_{n} \left( {\mathbb R} \right)\), so this is a natural setting for investigating Diophantine exponents. However, the temperedness assumption does not hold here. The work of Ghosh, Gorodnik and Nevo does provide upper bounds for \(\kappa\) (e.g., \(\kappa \leq n-1\) for \(n \geq 3\)) here, but these bounds are not optimal. In this work, the authors improve these upper bounds, obtaining bounds that approach \(1\) as \(n\) increases.
In Theorem 2, they obtain the optimal Diophantine exponent for \(n=2\) and \(3\); i.e., they show that \(\kappa=1\) for such \(n\). For \(n \geq 4\), they obtain an upper bound for \(\kappa\) that depends on bounds for the Generalised Ramanujan Conjecture (GRC) for \(\mathrm{GL}(n)\) (see Section 4.4 of this paper for its definition, as well as for Sarnak’s Density Hypothesis below). Given the best proven bounds that we currently have for GRC, they show that \(\kappa \leq 11/8\) for \(n=4\) and that \(\kappa \leq \left( n^{2}+1 \right)/ \left( n^{2}-n \right) =1 + O(1/n)\) for \(n \geq 5\). So as \(n\) grows, they obtain results increasingly close to the optimal value of \(1\).
Furthermore, they are able to prove that \(\kappa=1\) under Sarnak’s Density Hypothesis for \(\mathrm{GL}(n)\) (see their Theorem 3). This is of interest since this hypothesis is much weaker than GRC. This answers negatively a question that Ghosh, Gorodnik and Nevo ask in Remark 3.6 of their paper cited above: if \(\kappa=1\), does it follow that the temperedness assumption holds?
Finally, recall that a Diophantine exponent, \(\kappa \left( x_{0} \right)\), can be defined for individual elements too (\(\kappa\) is an infimum obtained from them). Due to local obstructions, this may be larger than \(\kappa\) for some elements, \(x_{0}\). The authors conjecture that \(\kappa \left( x_{0} \right)=1\) always holds in their setting. This is known, under GRC, for \(n=2\). Here, in their Theorem 4, the authors also prove that this is true for \(n=3\), subject to GRC.

MSC:

11J83 Metric theory
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11J13 Simultaneous homogeneous approximation, linear forms

Citations:

Zbl 1405.37012

Software:

GL(n)pack

Cite

References:

[1]Arthur, J., An introduction to the trace formula, (Harmonic Analysis, the Trace Formula, and Shimura Varieties. Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc., vol. 4, 2005, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-263 ·Zbl 1152.11021
[2]Assing, E.; Blomer, V., The density conjecture for principal congruence subgroups, 2022, To appear in Duke Mathematical Journal
[3]Blomer, V., Applications of the Kuznetsov formula on \(\operatorname{GL}(3)\), Invent. Math., 194, 3, 673-729, 2013 ·Zbl 1292.11064
[4]Blomer, V., Density theorems for \(\operatorname{GL}(n)\), Invent. Math., 232, 2, 683-711, 2023 ·Zbl 1530.11052
[5]Blomer, V., Epstein zeta-functions, subconvexity, and the purity conjecture, J. Inst. Math. Jussieu, 19, 2, 581-596, 2020 ·Zbl 1447.11098
[6]Blomer, V.; Brumley, F., On the Ramanujan conjecture over number fields, Ann. Math. (2), 174, 1, 581-605, 2011 ·Zbl 1322.11039
[7]Blomer, V.; Buttcane, J.; Raulf, N., A Sato-Tate law for \(\operatorname{GL}(3)\), Comment. Math. Helv., 89, 4, 895-919, 2014 ·Zbl 1317.11053
[8]Blomer, V.; Maga, P., Subconvexity for sup-norms of cusp forms on \(\operatorname{PGL}(\operatorname{n})\), Sel. Math. New Ser., 22, 3, 1269-1287, 2016 ·Zbl 1352.11054
[9]Blomer, V.; Man, S. H., Bounds for Kloosterman sums on \(\operatorname{GL}(n)\), 2022, To appear in Mathematische Annalen
[10]Bordenave, C.; Lacoin, H., Cutoff at the entropic time for random walks on covered expander graphs, J. Inst. Math. Jussieu, 1-46, 2021
[11]Browning, T. D.; Kumaraswamy, V. V.; Steiner, R. S., Twisted Linnik implies optimal covering exponent for \(S^3\), Int. Math. Res. Not., 1, 140-164, 2019 ·Zbl 1453.11104
[12]Bruhat, F.; Tits, J., Groupes réductifs sur un corps local, Publ. Math. Inst. Hautes Études Sci., 41, 5-251, 1972 ·Zbl 0254.14017
[13]Buttcane, J.; Zhou, F., Plancherel distribution of Satake parameters of Maass cusp forms on \(\operatorname{GL}_3\), Int. Math. Res. Not., 5, 1417-1444, 2020 ·Zbl 1437.11079
[14]Chiu, P., Covering with Hecke points, J. Number Theory, 53, 1, 25-44, 1995 ·Zbl 0839.11022
[15]Clozel, L.; Oh, H.; Ullmo, E., Hecke operators and equidistribution of Hecke points, Invent. Math., 144, 2, 327-351, 2001 ·Zbl 1144.11301
[16]Donnelly, H., On the cuspidal spectrum for finite volume symmetric spaces, J. Differ. Geom., 17, 2, 239-253, 1982 ·Zbl 0494.58029
[17]Duistermaat, J. J.; Kolk, J. A.C.; Varadarajan, V. S., Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math., 52, 1, 27-93, 1979 ·Zbl 0434.58019
[18]Flath, D., Decomposition of representations into tensor products, (Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., vol. XXXIII, 1979, Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 179-183 ·Zbl 0414.22019
[19]Ghosh, A.; Gorodnik, A.; Nevo, A., Diophantine approximation and automorphic spectrum, Int. Math. Res. Not., 21, 5002-5058, 2013 ·Zbl 1370.11077
[20]Ghosh, A.; Gorodnik, A.; Nevo, A., Metric Diophantine approximation on homogeneous varieties, Compos. Math., 150, 8, 1435-1456, 2014 ·Zbl 1309.37005
[21]Ghosh, A.; Gorodnik, A.; Nevo, A., Diophantine approximation exponents on homogeneous varieties, (Recent Trends in Ergodic Theory and Dynamical Systems. Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., vol. 631, 2015, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 181-200 ·Zbl 1377.11088
[22]Ghosh, A.; Gorodnik, A.; Nevo, A., Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math., 745, 155-188, 2018 ·Zbl 1405.37012
[23]Goldfeld, D., Automorphic Forms and L-Functions for the Group \(\operatorname{GL}(n, \mathbb{R})\), Cambridge Studies in Advanced Mathematics, vol. 99, 2006, Cambridge University Press: Cambridge University Press Cambridge, With an appendix by Kevin A. Broughan ·Zbl 1108.11039
[24]Golubev, K.; Kamber, A., Cutoff on hyperbolic surfaces, Geom. Dedic., 203, 225-255, 2019 ·Zbl 1428.58024
[25]Golubev, K.; Kamber, A., On Sarnak’s density conjecture and its applications, Forum Math. Sigma, 11, 1-51, 2023, Paper No. e48 ·Zbl 1548.11084
[26]Jana, S., Applications of analytic newvectors for \(\text{GL}(n)\), Math. Ann., 380, 3-4, 915-952, 2021 ·Zbl 1486.11067
[27]Jana, S.; Kamber, A., On the local \(L^2\)-bound of the Eisenstein series, 2022, arXiv preprint
[28]Kim, H. H.; Sarnak, P., Functoriality for the exterior square of \(\operatorname{GL}_4\) and the symmetric fourth of \(\operatorname{GL}_2\), appendix 2, J. Am. Math. Soc., 16, 1, 139-183, 2003 ·Zbl 1018.11024
[29]Kleinbock, D.; Merrill, K., Rational approximation on spheres, Isr. J. Math., 209, 1, 293-322, 2015 ·Zbl 1332.11070
[30]Lindenstrauss, E.; Venkatesh, A., Existence and Weyl’s law for spherical cusp forms, Geom. Funct. Anal., 17, 1, 220-251, 2007 ·Zbl 1137.22011
[31]Luo, W.; Rudnick, Z.; Sarnak, P., On the generalized Ramanujan conjecture for \(\operatorname{GL}(n)\), (Automorphic Forms, Automorphic Representations, and Arithmetic. Automorphic Forms, Automorphic Representations, and Arithmetic, Fort Worth, TX, 1996. Automorphic Forms, Automorphic Representations, and Arithmetic. Automorphic Forms, Automorphic Representations, and Arithmetic, Fort Worth, TX, 1996, Proc. Sympos. Pure Math., vol. 66, 1999, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 301-310 ·Zbl 0965.11023
[32]Miller, S. D., On the existence and temperedness of cusp forms for \(\operatorname{SL}_3(\mathbb{Z})\), J. Reine Angew. Math., 533, 127-169, 2001 ·Zbl 0996.11040
[33]Mœglin, C.; Waldspurger, J.-L., Le spectre résiduel de \(\operatorname{GL}(n)\), Ann. Sci. Éc. Norm. Supér. (4), 22, 4, 605-674, 1989 ·Zbl 0696.10023
[34]Mœglin, C.; Waldspurger, J.-L., Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, vol. 113, 1995, Cambridge University Press: Cambridge University Press Cambridge, Une paraphrase de l’Écriture [A paraphrase of Scripture] ·Zbl 0846.11032
[35]Müller, W., Weyl’s law for the cuspidal spectrum of \(\operatorname{SL}_n\), Ann. Math. (2), 165, 1, 275-333, 2007 ·Zbl 1119.11027
[36]Oh, H., Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113, 1, 133-192, 2002 ·Zbl 1011.22007
[37]Parzanchevski, O.; Sarnak, P., Super-Golden-Gates for \(\operatorname{PU}(2)\), Adv. Math., 327, 869-901, 2018 ·Zbl 1383.81059
[38]Platonov, V.; Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, vol. 139, 1994, Academic Press, Inc.: Academic Press, Inc. Boston, MA, Translated from the 1991 Russian original by Rachel Rowen ·Zbl 0806.11002
[39]Sardari, N. T., The Siegel variance formula for quadratic forms, 2019, arXiv preprint
[40]Sarnak, P., Notes on the generalized Ramanujan conjectures, (Harmonic Analysis, the Trace Formula, and Shimura Varieties. Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc., vol. 4, 2005, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 659-685 ·Zbl 1146.11031
[41]Sarnak, P., Letter to Stephen D. Miller and Naser Talebizadeh Sardari on optimal strong approximation by integral points on quadrics, 2015, available at
[42]Sarnak, P.; Xue, X. X., Bounds for multiplicities of automorphic representations, Duke Math. J., 64, 1, 207-227, 1991 ·Zbl 0741.22010
[43]Sarnak, P. C., Diophantine problems and linear groups, (Proceedings of the International Congress of Mathematicians, vol. I, II. Proceedings of the International Congress of Mathematicians, vol. I, II, Kyoto, 1990, 1991, Math. Soc. Japan: Math. Soc. Japan Tokyo), 459-471 ·Zbl 0743.11018
[44]Shalika, J. A., The multiplicity one theorem for \(\operatorname{GL}_n\), Ann. Math. (2), 100, 171-193, 1974 ·Zbl 0316.12010
[45]Silberger, A. J., Introduction to Harmonic Analysis on Reductive p-Adic Groups: Based on Lectures by Harish-Chandra at the Institute for Advanced Study, 1971-1973, Mathematical Notes, vol. 23, 1979, Princeton University Press/University of Tokyo Press: Princeton University Press/University of Tokyo Press Princeton, N.J./Tokyo ·Zbl 0458.22006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp