[1] | Arthur, J., An introduction to the trace formula, (Harmonic Analysis, the Trace Formula, and Shimura Varieties. Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc., vol. 4, 2005, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-263 ·Zbl 1152.11021 |
[2] | Assing, E.; Blomer, V., The density conjecture for principal congruence subgroups, 2022, To appear in Duke Mathematical Journal |
[3] | Blomer, V., Applications of the Kuznetsov formula on \(\operatorname{GL}(3)\), Invent. Math., 194, 3, 673-729, 2013 ·Zbl 1292.11064 |
[4] | Blomer, V., Density theorems for \(\operatorname{GL}(n)\), Invent. Math., 232, 2, 683-711, 2023 ·Zbl 1530.11052 |
[5] | Blomer, V., Epstein zeta-functions, subconvexity, and the purity conjecture, J. Inst. Math. Jussieu, 19, 2, 581-596, 2020 ·Zbl 1447.11098 |
[6] | Blomer, V.; Brumley, F., On the Ramanujan conjecture over number fields, Ann. Math. (2), 174, 1, 581-605, 2011 ·Zbl 1322.11039 |
[7] | Blomer, V.; Buttcane, J.; Raulf, N., A Sato-Tate law for \(\operatorname{GL}(3)\), Comment. Math. Helv., 89, 4, 895-919, 2014 ·Zbl 1317.11053 |
[8] | Blomer, V.; Maga, P., Subconvexity for sup-norms of cusp forms on \(\operatorname{PGL}(\operatorname{n})\), Sel. Math. New Ser., 22, 3, 1269-1287, 2016 ·Zbl 1352.11054 |
[9] | Blomer, V.; Man, S. H., Bounds for Kloosterman sums on \(\operatorname{GL}(n)\), 2022, To appear in Mathematische Annalen |
[10] | Bordenave, C.; Lacoin, H., Cutoff at the entropic time for random walks on covered expander graphs, J. Inst. Math. Jussieu, 1-46, 2021 |
[11] | Browning, T. D.; Kumaraswamy, V. V.; Steiner, R. S., Twisted Linnik implies optimal covering exponent for \(S^3\), Int. Math. Res. Not., 1, 140-164, 2019 ·Zbl 1453.11104 |
[12] | Bruhat, F.; Tits, J., Groupes réductifs sur un corps local, Publ. Math. Inst. Hautes Études Sci., 41, 5-251, 1972 ·Zbl 0254.14017 |
[13] | Buttcane, J.; Zhou, F., Plancherel distribution of Satake parameters of Maass cusp forms on \(\operatorname{GL}_3\), Int. Math. Res. Not., 5, 1417-1444, 2020 ·Zbl 1437.11079 |
[14] | Chiu, P., Covering with Hecke points, J. Number Theory, 53, 1, 25-44, 1995 ·Zbl 0839.11022 |
[15] | Clozel, L.; Oh, H.; Ullmo, E., Hecke operators and equidistribution of Hecke points, Invent. Math., 144, 2, 327-351, 2001 ·Zbl 1144.11301 |
[16] | Donnelly, H., On the cuspidal spectrum for finite volume symmetric spaces, J. Differ. Geom., 17, 2, 239-253, 1982 ·Zbl 0494.58029 |
[17] | Duistermaat, J. J.; Kolk, J. A.C.; Varadarajan, V. S., Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math., 52, 1, 27-93, 1979 ·Zbl 0434.58019 |
[18] | Flath, D., Decomposition of representations into tensor products, (Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., vol. XXXIII, 1979, Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 179-183 ·Zbl 0414.22019 |
[19] | Ghosh, A.; Gorodnik, A.; Nevo, A., Diophantine approximation and automorphic spectrum, Int. Math. Res. Not., 21, 5002-5058, 2013 ·Zbl 1370.11077 |
[20] | Ghosh, A.; Gorodnik, A.; Nevo, A., Metric Diophantine approximation on homogeneous varieties, Compos. Math., 150, 8, 1435-1456, 2014 ·Zbl 1309.37005 |
[21] | Ghosh, A.; Gorodnik, A.; Nevo, A., Diophantine approximation exponents on homogeneous varieties, (Recent Trends in Ergodic Theory and Dynamical Systems. Recent Trends in Ergodic Theory and Dynamical Systems, Contemp. Math., vol. 631, 2015, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 181-200 ·Zbl 1377.11088 |
[22] | Ghosh, A.; Gorodnik, A.; Nevo, A., Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math., 745, 155-188, 2018 ·Zbl 1405.37012 |
[23] | Goldfeld, D., Automorphic Forms and L-Functions for the Group \(\operatorname{GL}(n, \mathbb{R})\), Cambridge Studies in Advanced Mathematics, vol. 99, 2006, Cambridge University Press: Cambridge University Press Cambridge, With an appendix by Kevin A. Broughan ·Zbl 1108.11039 |
[24] | Golubev, K.; Kamber, A., Cutoff on hyperbolic surfaces, Geom. Dedic., 203, 225-255, 2019 ·Zbl 1428.58024 |
[25] | Golubev, K.; Kamber, A., On Sarnak’s density conjecture and its applications, Forum Math. Sigma, 11, 1-51, 2023, Paper No. e48 ·Zbl 1548.11084 |
[26] | Jana, S., Applications of analytic newvectors for \(\text{GL}(n)\), Math. Ann., 380, 3-4, 915-952, 2021 ·Zbl 1486.11067 |
[27] | Jana, S.; Kamber, A., On the local \(L^2\)-bound of the Eisenstein series, 2022, arXiv preprint |
[28] | Kim, H. H.; Sarnak, P., Functoriality for the exterior square of \(\operatorname{GL}_4\) and the symmetric fourth of \(\operatorname{GL}_2\), appendix 2, J. Am. Math. Soc., 16, 1, 139-183, 2003 ·Zbl 1018.11024 |
[29] | Kleinbock, D.; Merrill, K., Rational approximation on spheres, Isr. J. Math., 209, 1, 293-322, 2015 ·Zbl 1332.11070 |
[30] | Lindenstrauss, E.; Venkatesh, A., Existence and Weyl’s law for spherical cusp forms, Geom. Funct. Anal., 17, 1, 220-251, 2007 ·Zbl 1137.22011 |
[31] | Luo, W.; Rudnick, Z.; Sarnak, P., On the generalized Ramanujan conjecture for \(\operatorname{GL}(n)\), (Automorphic Forms, Automorphic Representations, and Arithmetic. Automorphic Forms, Automorphic Representations, and Arithmetic, Fort Worth, TX, 1996. Automorphic Forms, Automorphic Representations, and Arithmetic. Automorphic Forms, Automorphic Representations, and Arithmetic, Fort Worth, TX, 1996, Proc. Sympos. Pure Math., vol. 66, 1999, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 301-310 ·Zbl 0965.11023 |
[32] | Miller, S. D., On the existence and temperedness of cusp forms for \(\operatorname{SL}_3(\mathbb{Z})\), J. Reine Angew. Math., 533, 127-169, 2001 ·Zbl 0996.11040 |
[33] | Mœglin, C.; Waldspurger, J.-L., Le spectre résiduel de \(\operatorname{GL}(n)\), Ann. Sci. Éc. Norm. Supér. (4), 22, 4, 605-674, 1989 ·Zbl 0696.10023 |
[34] | Mœglin, C.; Waldspurger, J.-L., Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, vol. 113, 1995, Cambridge University Press: Cambridge University Press Cambridge, Une paraphrase de l’Écriture [A paraphrase of Scripture] ·Zbl 0846.11032 |
[35] | Müller, W., Weyl’s law for the cuspidal spectrum of \(\operatorname{SL}_n\), Ann. Math. (2), 165, 1, 275-333, 2007 ·Zbl 1119.11027 |
[36] | Oh, H., Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113, 1, 133-192, 2002 ·Zbl 1011.22007 |
[37] | Parzanchevski, O.; Sarnak, P., Super-Golden-Gates for \(\operatorname{PU}(2)\), Adv. Math., 327, 869-901, 2018 ·Zbl 1383.81059 |
[38] | Platonov, V.; Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, vol. 139, 1994, Academic Press, Inc.: Academic Press, Inc. Boston, MA, Translated from the 1991 Russian original by Rachel Rowen ·Zbl 0806.11002 |
[39] | Sardari, N. T., The Siegel variance formula for quadratic forms, 2019, arXiv preprint |
[40] | Sarnak, P., Notes on the generalized Ramanujan conjectures, (Harmonic Analysis, the Trace Formula, and Shimura Varieties. Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc., vol. 4, 2005, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 659-685 ·Zbl 1146.11031 |
[41] | Sarnak, P., Letter to Stephen D. Miller and Naser Talebizadeh Sardari on optimal strong approximation by integral points on quadrics, 2015, available at |
[42] | Sarnak, P.; Xue, X. X., Bounds for multiplicities of automorphic representations, Duke Math. J., 64, 1, 207-227, 1991 ·Zbl 0741.22010 |
[43] | Sarnak, P. C., Diophantine problems and linear groups, (Proceedings of the International Congress of Mathematicians, vol. I, II. Proceedings of the International Congress of Mathematicians, vol. I, II, Kyoto, 1990, 1991, Math. Soc. Japan: Math. Soc. Japan Tokyo), 459-471 ·Zbl 0743.11018 |
[44] | Shalika, J. A., The multiplicity one theorem for \(\operatorname{GL}_n\), Ann. Math. (2), 100, 171-193, 1974 ·Zbl 0316.12010 |
[45] | Silberger, A. J., Introduction to Harmonic Analysis on Reductive p-Adic Groups: Based on Lectures by Harish-Chandra at the Institute for Advanced Study, 1971-1973, Mathematical Notes, vol. 23, 1979, Princeton University Press/University of Tokyo Press: Princeton University Press/University of Tokyo Press Princeton, N.J./Tokyo ·Zbl 0458.22006 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.