[1] | Bai, Z., Hu, D., and Reichel, L., A Newton basis GMRES implementation, IMA J. Numer. Anal., 14 (1994), pp. 563-581. ·Zbl 0818.65022 |
[2] | Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J., PETSc, https://petsc.org/, 2023. |
[3] | Ballard, G., Carson, E., Demmel, J., Hoemmen, M., Knight, N., and Schwartz, O., Communication lower bounds and optimal algorithms for numerical linear algebra, Acta Numer., 23 (2014), 1. ·Zbl 1396.65082 |
[4] | Barlow, J. L. and Smoktunowicz, A., Reorthogonalized block classical Gram-Schmidt, Numer. Math., 123 (2013), pp. 395-423. ·Zbl 1269.65042 |
[5] | Beckermann, B., The condition number of real Vandermonde, Krylov and positive definite Hankel matrices, Numer. Math., 85 (2000), pp. 553-577. ·Zbl 0965.15003 |
[6] | Bischof, C. H., Incremental condition estimation, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 312-322. ·Zbl 0697.65042 |
[7] | Bischof, C. H. and Tang, P. T., Robust Incremental Condition Estimation, Technical report, Argonne National Laboratory, Lemont, IL, 1991. |
[8] | Boisvert, R. F., Pozo, R., Remington, K., Barrett, R. F., and Dongarra, J. J., Matrix Market: A web resource for test matrix collections, in Quality of Numerical Software, Springer, New York, 1997, pp. 125-137. |
[9] | Carson, E., Lund, K., Rozložník, M., and Thomas, S., Block Gram-Schmidt algorithms and their stability properties, Linear Algebra Appl., 638 (2022), pp. 150-195. ·Zbl 1490.65074 |
[10] | Carson, E. C., Communication-Avoiding Krylov Subspace Methods in Theory and Practice, Ph.D. thesis, UC Berkeley, 2015. |
[11] | Carson, E. C., The adaptive s-step conjugate gradient method, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1318-1338. ·Zbl 1398.65044 |
[12] | Chronopoulos, A. and Gear, C. W., s-step iterative methods for symmetric linear systems, J. Comput. Appl. Math., 25 (1989), pp. 153-168. ·Zbl 0669.65021 |
[13] | Chronopoulos, A. T., s-step iterative methods for (non) symmetric (in) definite linear systems, SIAM J. Numer. Anal., 28 (1991), pp. 1776-1789. ·Zbl 0741.65026 |
[14] | Chronopoulos, A. T. and Swanson, C. D., Parallel iterative s-step methods for unsymmetric linear systems, Parallel Comput., 22 (1996), pp. 623-641. ·Zbl 0873.65019 |
[15] | Getting Up to Speed: The Future of Supercomputing, National Academies Press, Washington, DC, 2005. |
[16] | Daniel, J. W., Gragg, W. B., Kaufman, L., and Stewart, G. W., Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR actorization, Math. Comp., 30 (1976), pp. 772-795. ·Zbl 0345.65021 |
[17] | Davis, T. A. and Hu, Y., The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), pp. 1-25. ·Zbl 1365.65123 |
[18] | De Sturler, E. and van der Vorst, H. A., Reducing the effect of global communication in GMRES (m) and CG on parallel distributed memory computers, Appl. Numer. Math., 18 (1995), pp. 441-459. ·Zbl 0842.65019 |
[19] | Demmel, J., Grigori, L., Hoemmen, M., and Langou, J., Communication-optimal parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206-A239. ·Zbl 1241.65028 |
[20] | Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K., Avoiding communication in sparse matrix computations, in Proceedings of the International Symposium on Parallel and Distributed Processing, , IEEE, 2008, pp. 1-12. |
[21] | Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S., A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1-17. ·Zbl 0900.65115 |
[22] | Drkošová, J., Greenbaum, A., Rozložník, M., and Strakoš, Z., Numerical stability of GMRES, BIT, 35 (1995), pp. 309-330. ·Zbl 0837.65040 |
[23] | Golub, G. H. and Van Loan, C. F., Matrix Computations, JHU Press, Baltimore, 2013. ·Zbl 1268.65037 |
[24] | Hernandez, V., Roman, J. E., and Vidal, V., SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351-362. ·Zbl 1136.65315 |
[25] | Higham, N. J., Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2002. ·Zbl 1011.65010 |
[26] | Hoemmen, M., Communication-Avoiding Krylov Subspace Methods, Technical report UCB/EECS-2010-37, University of California, Berkeley, 2010. |
[27] | Imberti, D. and Erhel, J., Varying the s in your s-step GMRES, Electron. Trans. Numer. Anal., 47 (2017), pp. 206-230. ·Zbl 1386.65108 |
[28] | Joubert, W. D. and Carey, G. F., Parallelizable restarted iterative methods for nonsymmetric linear systems. II: Parallel implementation, Int. J. Comput. Math., 44 (1992), pp. 269-290. ·Zbl 0759.65009 |
[29] | Joubert, W. D. and Carey, G. F., Parallelizable restarted iterative methods for nonsymmetric linear systems. Part I: Theory, Int. J. Comput. Math., 44 (1992), pp. 243-267. ·Zbl 0759.65008 |
[30] | Mohiyuddin, M., Hoemmen, M., Demmel, J., and Yelick, K., Minimizing communication in sparse matrix solvers, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, , IEEE, 2009, pp. 1-12. |
[31] | Philippe, B. and Reichel, L., On the generation of Krylov subspace bases, Appl. Numer. Math., 62 (2012), pp. 1171-1186. ·Zbl 1253.65049 |
[32] | Saad, Y. and Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869. ·Zbl 0599.65018 |
[33] | Swirydowicz, K., Langou, J., Ananthan, S., Yang, U., and Thomas, S., Low Synchronization Gram-Schmidt and Generalized Minimal Residual Algorithms, Technical report, National Renewable Energy Laboratory, Golden, CO, 2020. |
[34] | Walker, H. F., Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 152-163. ·Zbl 0698.65021 |
[35] | Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., and Fukaya, T., Roundoff error analysis of the CholeskyQR2 algorithm, Electron. Trans. Numer. Anal., 44 (2015). ·Zbl 1330.65049 |
[36] | Yamazaki, I., Hoemmen, M., Luszczek, P., and Dongarra, J., Improving performance of GMRES by reducing communication and pipelining global collectives, in Proceedings of the International Parallel and Distributed Processing Symposium Workshops (IPDPSW), , IEEE, 2017, pp. 1118-1127. |
[37] | Yamazaki, I., Thomas, S., Hoemmen, M., Boman, E. G., Świrydowicz, K., and Elliott, J. J., Low-synchronization orthogonalization schemes for s-step and pipelined Krylov solvers in Trilinos, in Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing, , SIAM, Philadelphia, 2020, pp. 118-128. |
[38] | Yamazaki, I., Tomov, S., and Dongarra, J., Mixed-precision Cholesky QR factorization and its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput., 37 (2015), pp. C307-C330. ·Zbl 1320.65046 |