Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A numerically stable communication-avoiding \(s\)-step GMRES algorithm.(English)Zbl 1552.65040

Summary: Krylov subspace methods are extensively used in scientific computing to solve large-scale linear systems. However, the performance of these iterative Krylov solvers on modern supercomputers is limited by expensive communication costs. The \(s\)-step strategy generates a series of \(s\) Krylov vectors at a time to avoid communication. Asymptotically, the \(s\)-step approach can reduce communication latency by a factor of \(s\). Unfortunately, due to finite-precision implementation, the step size has to be kept small for stability. In this work, we tackle the numerical instabilities encountered in the \(s\)-step GMRES algorithm. By choosing an appropriate polynomial basis and block orthogonalization schemes, we construct a communication-avoiding \(s\)-step GMRES algorithm that automatically selects the optimal step size to ensure numerical stability. To further maximize communication savings, we introduce scaled Newton polynomials that can increase the step size \(s\) to a few hundreds for many problems. An initial step size estimator is also developed to efficiently choose the optimal step size for stability. The guaranteed stability of the proposed algorithm is demonstrated using numerical experiments. In the process, we also evaluate how the choice of polynomial and preconditioning affects the stability limit of the algorithm. Finally, we show parallel scalability on more than 114,000 cores in a distributed-memory setting. Perfectly linear scaling has been observed in both strong and weak scaling studies with negligible communication costs.

MSC:

65F25 Orthogonalization in numerical linear algebra
65F10 Iterative numerical methods for linear systems
65G50 Roundoff error
65Y05 Parallel numerical computation

Cite

References:

[1]Bai, Z., Hu, D., and Reichel, L., A Newton basis GMRES implementation, IMA J. Numer. Anal., 14 (1994), pp. 563-581. ·Zbl 0818.65022
[2]Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J., PETSc, https://petsc.org/, 2023.
[3]Ballard, G., Carson, E., Demmel, J., Hoemmen, M., Knight, N., and Schwartz, O., Communication lower bounds and optimal algorithms for numerical linear algebra, Acta Numer., 23 (2014), 1. ·Zbl 1396.65082
[4]Barlow, J. L. and Smoktunowicz, A., Reorthogonalized block classical Gram-Schmidt, Numer. Math., 123 (2013), pp. 395-423. ·Zbl 1269.65042
[5]Beckermann, B., The condition number of real Vandermonde, Krylov and positive definite Hankel matrices, Numer. Math., 85 (2000), pp. 553-577. ·Zbl 0965.15003
[6]Bischof, C. H., Incremental condition estimation, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 312-322. ·Zbl 0697.65042
[7]Bischof, C. H. and Tang, P. T., Robust Incremental Condition Estimation, Technical report, Argonne National Laboratory, Lemont, IL, 1991.
[8]Boisvert, R. F., Pozo, R., Remington, K., Barrett, R. F., and Dongarra, J. J., Matrix Market: A web resource for test matrix collections, in Quality of Numerical Software, Springer, New York, 1997, pp. 125-137.
[9]Carson, E., Lund, K., Rozložník, M., and Thomas, S., Block Gram-Schmidt algorithms and their stability properties, Linear Algebra Appl., 638 (2022), pp. 150-195. ·Zbl 1490.65074
[10]Carson, E. C., Communication-Avoiding Krylov Subspace Methods in Theory and Practice, Ph.D. thesis, UC Berkeley, 2015.
[11]Carson, E. C., The adaptive s-step conjugate gradient method, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1318-1338. ·Zbl 1398.65044
[12]Chronopoulos, A. and Gear, C. W., s-step iterative methods for symmetric linear systems, J. Comput. Appl. Math., 25 (1989), pp. 153-168. ·Zbl 0669.65021
[13]Chronopoulos, A. T., s-step iterative methods for (non) symmetric (in) definite linear systems, SIAM J. Numer. Anal., 28 (1991), pp. 1776-1789. ·Zbl 0741.65026
[14]Chronopoulos, A. T. and Swanson, C. D., Parallel iterative s-step methods for unsymmetric linear systems, Parallel Comput., 22 (1996), pp. 623-641. ·Zbl 0873.65019
[15]Getting Up to Speed: The Future of Supercomputing, National Academies Press, Washington, DC, 2005.
[16]Daniel, J. W., Gragg, W. B., Kaufman, L., and Stewart, G. W., Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR actorization, Math. Comp., 30 (1976), pp. 772-795. ·Zbl 0345.65021
[17]Davis, T. A. and Hu, Y., The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), pp. 1-25. ·Zbl 1365.65123
[18]De Sturler, E. and van der Vorst, H. A., Reducing the effect of global communication in GMRES (m) and CG on parallel distributed memory computers, Appl. Numer. Math., 18 (1995), pp. 441-459. ·Zbl 0842.65019
[19]Demmel, J., Grigori, L., Hoemmen, M., and Langou, J., Communication-optimal parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206-A239. ·Zbl 1241.65028
[20]Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K., Avoiding communication in sparse matrix computations, in Proceedings of the International Symposium on Parallel and Distributed Processing, , IEEE, 2008, pp. 1-12.
[21]Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S., A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1-17. ·Zbl 0900.65115
[22]Drkošová, J., Greenbaum, A., Rozložník, M., and Strakoš, Z., Numerical stability of GMRES, BIT, 35 (1995), pp. 309-330. ·Zbl 0837.65040
[23]Golub, G. H. and Van Loan, C. F., Matrix Computations, JHU Press, Baltimore, 2013. ·Zbl 1268.65037
[24]Hernandez, V., Roman, J. E., and Vidal, V., SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351-362. ·Zbl 1136.65315
[25]Higham, N. J., Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2002. ·Zbl 1011.65010
[26]Hoemmen, M., Communication-Avoiding Krylov Subspace Methods, Technical report UCB/EECS-2010-37, University of California, Berkeley, 2010.
[27]Imberti, D. and Erhel, J., Varying the s in your s-step GMRES, Electron. Trans. Numer. Anal., 47 (2017), pp. 206-230. ·Zbl 1386.65108
[28]Joubert, W. D. and Carey, G. F., Parallelizable restarted iterative methods for nonsymmetric linear systems. II: Parallel implementation, Int. J. Comput. Math., 44 (1992), pp. 269-290. ·Zbl 0759.65009
[29]Joubert, W. D. and Carey, G. F., Parallelizable restarted iterative methods for nonsymmetric linear systems. Part I: Theory, Int. J. Comput. Math., 44 (1992), pp. 243-267. ·Zbl 0759.65008
[30]Mohiyuddin, M., Hoemmen, M., Demmel, J., and Yelick, K., Minimizing communication in sparse matrix solvers, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, , IEEE, 2009, pp. 1-12.
[31]Philippe, B. and Reichel, L., On the generation of Krylov subspace bases, Appl. Numer. Math., 62 (2012), pp. 1171-1186. ·Zbl 1253.65049
[32]Saad, Y. and Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869. ·Zbl 0599.65018
[33]Swirydowicz, K., Langou, J., Ananthan, S., Yang, U., and Thomas, S., Low Synchronization Gram-Schmidt and Generalized Minimal Residual Algorithms, Technical report, National Renewable Energy Laboratory, Golden, CO, 2020.
[34]Walker, H. F., Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 152-163. ·Zbl 0698.65021
[35]Yamamoto, Y., Nakatsukasa, Y., Yanagisawa, Y., and Fukaya, T., Roundoff error analysis of the CholeskyQR2 algorithm, Electron. Trans. Numer. Anal., 44 (2015). ·Zbl 1330.65049
[36]Yamazaki, I., Hoemmen, M., Luszczek, P., and Dongarra, J., Improving performance of GMRES by reducing communication and pipelining global collectives, in Proceedings of the International Parallel and Distributed Processing Symposium Workshops (IPDPSW), , IEEE, 2017, pp. 1118-1127.
[37]Yamazaki, I., Thomas, S., Hoemmen, M., Boman, E. G., Świrydowicz, K., and Elliott, J. J., Low-synchronization orthogonalization schemes for s-step and pipelined Krylov solvers in Trilinos, in Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing, , SIAM, Philadelphia, 2020, pp. 118-128.
[38]Yamazaki, I., Tomov, S., and Dongarra, J., Mixed-precision Cholesky QR factorization and its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput., 37 (2015), pp. C307-C330. ·Zbl 1320.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp