[1] | I. B. ABDUL-MONIEM, H. F. ABDEL-HAMEED (2012). On exponentiated Lomax distribution. International Journal of Mathematical Archive, 3, pp. 2144-2150. |
[2] | B. AL-ZAHRANI (2015). An extended Poisson-Lomax distribution. Advances in Mathematics: Scientific Journal, 4, pp. 79-89. ·Zbl 1336.60017 |
[3] | B. AL-ZAHRANI, H. SAGOR (2014a). The Poisson-Lomax distribution. Colombian Journal of Statistics, 37, pp. 223-243. ·Zbl 1435.62360 |
[4] | B. AL-ZAHRANI, H. SAGOR (2014b). Statistical analysis of the Lomax-logarithmic distribution. Journal of Statistical Computation and Simulation, 85, pp. 1883-1901. ·Zbl 1457.62058 |
[5] | L. BAIN, M. ENGELHARDT (1992). Introduction to Probability and Mathematical Statistics. Duxbury Press, London. ·Zbl 0866.60003 |
[6] | S. BENNETTE (1983). Log-logistic regression models for survival data. Applied Statistics, 32, pp. 165-171. |
[7] | C. E. BONFERRONI (1930). Elmenti di Statistica Generale. Libreria Seber, Firenze. |
[8] | M. C. BRYSON (1974). Heavy-tailed distributions: Properties and tests. Technometrics, 16, pp. 61-68. ·Zbl 0337.62065 |
[9] | G. CASELLA, R. L. BERGER (1990). Statistical Inference. Duxbury Press, Belmont, CA. ·Zbl 0699.62001 |
[10] | G. M. CORDEIRO, E. M. M. ORTEGA, C. C. DANIEL (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11, pp. 1-27. |
[11] | S. DEY, A. ALZAATREH, C. ZHANG, D. KUMAR (2017a). A new extension of generalized exponential distribution with application to ozone data. OZONE: Science and Engineering, 39, pp. 273-285. |
[12] | S. DEY, M. NASSAR, D. KUMAR (2017b). Alpha logarithmic transformed family of distributions with application. Annals of Data Sciences, 4, no. 4, pp. 457-482. |
[13] | S. DEY, M. NASSAR, D. KUMAR (2019). Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function. Journal of Computational and Applied Mathematics, 348, pp. 130-145. ·Zbl 1404.60028 |
[14] | B. EFRON (1988). Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American Statistical Association, 83, pp. 414-425. ·Zbl 0644.62100 |
[15] | M. E. GHITANY, F. A. AL-AWADHI, L. A. ALKHALFAN (2007). Marshall-Olkin extended Lomax distribution and its application to censored data. Communication in Statistics-Theory and Methods, 36, pp. 1855-1866. ·Zbl 1122.62081 |
[16] | I. S. GRADSHTEYN, I. M. RYZHIK (2014). Table of Integrals, Series, and Products. Academic Press, San Diego, CA, sixth ed. ·Zbl 0918.65002 |
[17] | R. C. GUPTA, J. KEATING (1985). Relations for reliability measures under length biased sampling. Scandinavian Journal of Statistics, 13, pp. 49-56. ·Zbl 0627.62098 |
[18] | R. C. GUPTA, S. KIRMANI (1990). The role of weighted distribution in stochastic modeling. Communication in Statistics-Theory and Methods, 19, pp. 3147-3162. ·Zbl 0734.62093 |
[19] | R. D. GUPTA, D. KUNDU (2009). A new class of weighted exponential distributions. Statistics: A Journal of Theoretical and Applied Statistics, 43, pp. 621-634. ·Zbl 1291.60029 |
[20] | O.HOLLAND, A.GOLAUP, A. H. AGHVAMI (2006). Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration. IEE Proceedings - Communications, ·Zbl 1096.68509 |
[21] | , pp. 683-690. |
[22] | M. C. JONES (2015). On families of distributions with shape parameters. International Statistical Review, 83, pp. 175-192. ·Zbl 07763428 |
[23] | S. KOTZ, S.NADARAJAH (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press, London. ·Zbl 0960.62051 |
[24] | C. KUS (2007). A new lifetime distribution. Computational Statistics and Data Analysis, 51, pp. 4497-4509. ·Zbl 1162.62309 |
[25] | A. LANGLANDS, S. POCOCK, G. KERR, S.GORE (1997). Long-termsurvival of patients with breast cancer: A study of the curability of the disease. British Medical Journal, 2, pp. 1247-1251. |
[26] | C. LEE, F. FAMOYE, A. ALZAATREH (2013). Methods for generating families of continuous distribution in the recent decades.Wiley InterdisciplinaryReviews: Computational Statistics, 5, pp. 219-238. ·Zbl 1540.62014 |
[27] | E. LEE, J.W.WANG (2003). Statistical Methods for Survival Data Analysis. John Wiley, New York, 3rd ed. ·Zbl 1026.62103 |
[28] | A. J. LEMONTE, G. M. CORDEIRO (2013). An extended Lomax distribution. Statistics: A Journal of Theoretical and Applied Statistics, 47, pp. 800-816. ·Zbl 1440.62062 |
[29] | K. C. LOMAX (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49, pp. 847-852. ·Zbl 0056.13702 |
[30] | A.MAHDAVI, D. KUNDU (2017). A new method for generating distributions with an application to exponential distribution. Communications in Statistics-Theory and Methods, 46, pp. 6543-6557. ·Zbl 1391.62022 |
[31] | D. N. P. MURTHY, M. XIE, R. JIANG (2004). Weibull Models. JohnWiley, New York. |
[32] | M.NASSAR, A.ALZAATREH, M.MEAD, O.ABO-KASEM (2017). Alpha power Weibull distribution: Properties and applications. Communications in Statistics-Theory and Methods, 46, pp. 10236-10252. ·Zbl 1386.60060 |
[33] | Z. M. NOFAL, A. Z. AFIFY, H. YOUSOF, G. M. CORDEIRO (2017). The generalized transmuted-G family of distributions. Communications in Statistics-Theory and Methods, 46, no. 8, pp. 4119-4136. ·Zbl 1368.62027 |
[34] | B. OLUYEDE (1999). On inequalities and selection of experiments for length-biased distributions. Probability in the Engineering and Informational Sciences, 13, pp. 169-185. ·Zbl 0960.62115 |
[35] | G. PATIL (2002). Weighted distributions. Encyclopedia of Environmetics, 4, pp. 2369-2377. |
[36] | G. PATIL, C. RAO (1978). Weighted distributions and size-biased sampling with application to wildlife populations and human families. Biometrics, 34, pp. 179-189. ·Zbl 0384.62014 |
[37] | G. PATIL, C. RAO, M. RATNAPARKHI (1986). On discrete weighted distributions and their use in model choice for observed data. Communications in Statistics-Theory and Methods, 15, pp. 907-918. ·Zbl 0601.62022 |
[38] | F. PROSCHAN (1963). Theoretical explanation of observed decreasing failure rate. Technometrics, 5, pp. 375-383. |
[39] | C. R. RAO (1965). On discrete distributions arising out of methods of ascertainment. In G. PATIL (ed.), Classical and Contagious Discrete Distributions, Statistical Publishing Society, Calcutta, pp. 320-333. |
[40] | M. H. TAHIR, G. M. CORDEIRO, M. MANSOOR, M. ZUBAIR (2015). The Weibull-Lomax distribution: Properties and applications. Hacettepe Journal of Mathematics and Statistics, 44, p. 461 - 480. ·Zbl 1326.60023 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.