Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Isotropy fibers of ideals in groupoid \(\mathrm{C}^\ast\)-algebras.(English)Zbl 1551.46044

Summary: Given a locally compact étale groupoid and an ideal \(I\) in its groupoid \(\mathrm{C}^\ast\)-algebra, we show that \(I\) defines a family of ideals in group \(\mathrm{C}^\ast\)-algebras of the isotropy groups and then study to which extent \(I\) is determined by this family. As an application we obtain the following results: (a) prove that every proper ideal is contained in an induced primitive ideal; (b) describe the maximal ideals; (c) classify the primitive ideals for a class of graded groupoids with essentially central isotropy.

MSC:

46L05 General theory of \(C^*\)-algebras
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
22A22 Topological groupoids (including differentiable and Lie groupoids)

Cite

References:

[1]Alekseev, V.; Finn-Sell, M., Non-amenable principal groupoids with weak containment, Int. Math. Res. Not., 8, 2332-2340, 2018, MR 3801485 ·Zbl 1406.22016
[2]Archbold, R. J.; Spielberg, J. S., Topologically free actions and ideals in discrete \(C^\ast \)-dynamical systems, Proc. Edinb. Math. Soc. (2), 37, 1, 119-124, 1994, MR 1258035 ·Zbl 0799.46076
[3]Batty, C. J.K., Simplexes of extensions of states of \(C^\ast \)-algebras, Trans. Am. Math. Soc., 272, 1, 237-246, 1982, MR 0656488 ·Zbl 0494.46057
[4]Bekka, B.; de la Harpe, P.; Valette, A., Kazhdan’s Property (T), New Mathematical Monographs, vol. 11, 2008, Cambridge University Press: Cambridge University Press Cambridge, MR 2415834 ·Zbl 1146.22009
[5]Breuillard, E.; Kalantar, M.; Kennedy, M.; Ozawa, N., \( C^\ast \)-simplicity and the unique trace property for discrete groups, Publ. Math. Inst. Hautes Études Sci., 126, 35-71, 2017, MR 3735864 ·Zbl 1391.46071
[6]Brown, J. H.; Nagy, G.; Reznikoff, S.; Sims, A.; Williams, D., Cartan subalgebras in C^⁎-algebras of Hausdorff étale groupoids, Integral Equ. Oper. Theory, 85, 1, 109-126, 2016 ·Zbl 1360.46046
[7]Christensen, J., The structure of KMS weights on étale groupoid \(C^\ast \)-algebras, J. Noncommut. Geom., 17, 2, 663-691, 2023, MR 4592883 ·Zbl 1526.46037
[8]Christensen, J.; Neshveyev, S., (Non)exotic completions of the group algebras of isotropy groups, Int. Math. Res. Not., 19, 15155-15186, 2022, MR 4490951 ·Zbl 1506.46053
[9]Clark, L. O.; Exel, R.; Pardo, E.; Sims, A.; Starling, C., Simplicity of algebras associated to non-Hausdorff groupoids, Trans. Am. Math. Soc., 372, 5, 3669-3712, 2019, MR 3988622 ·Zbl 1491.16032
[10]Crytser, D.; Nagy, G., Simplicity criteria for étale groupoid \(C^\ast \)-algebras, J. Oper. Theory, 83, 1, 95-138, 2020, MR 4043708 ·Zbl 1463.53088
[11]Effros, E. G.; Hahn, F., Locally Compact Transformation Groups and \(C^\ast \)-Algebras, vol. 75, 1967, American Mathematical Society: American Mathematical Society Providence, R.I., MR 0227310 ·Zbl 0166.11802
[12]Exel, R., Inverse semigroups and combinatorial \(C^\ast \)-algebras, Bull. Braz. Math. Soc. (N. S.), 39, 2, 191-313, 2008, MR 2419901 ·Zbl 1173.46035
[13]Gootman, E. C.; Rosenberg, J., The structure of crossed product \(C^\ast \)-algebras: a proof of the generalized Effros-Hahn conjecture, Invent. Math., 52, 3, 283-298, 1979, MR 0537063 ·Zbl 0396.22009
[14]Higson, N.; Lafforgue, V.; Skandalis, G., Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal., 12, 2, 330-354, 2002, MR 1911663 ·Zbl 1014.46043
[15]Ionescu, M.; Williams, D. P., Irreducible representations of groupoid \(C^\ast \)-algebras, Proc. Am. Math. Soc., 137, 4, 1323-1332, 2009, MR 2465655 ·Zbl 1170.46060
[16]Ionescu, M.; Williams, D. P., The generalized Effros-Hahn conjecture for groupoids, Indiana Univ. Math. J., 58, 6, 2489-2508, 2009, MR 2603756 ·Zbl 1213.46065
[17]Kalantar, M.; Scarparo, E., Boundary maps and covariant representations, Bull. Lond. Math. Soc., 54, 5, 1944-1961, 2022, MR 4523573 ·Zbl 1534.46047
[18]Kawabe, T., Uniformly recurrent subgroups and the ideal structure of reduced crossed products, 2017, preprint, available at
[19]Kennedy, M.; Kim, S.-J.; Li, X.; Raum, S.; Ursu, D., The ideal intersection property for essential groupoid C^⁎-algebras, 2021, preprint, available at
[20]Kirchberg, E.; Wassermann, S., Exact groups and continuous bundles of \(C^\ast \)-algebras, Math. Ann., 315, 2, 169-203, 1999, MR 1721796 ·Zbl 0946.46054
[21]Kwaśniewski, B. K.; Meyer, R., Essential crossed products for inverse semigroup actions: simplicity and pure infiniteness, Doc. Math., 26, 271-335, 2021, MR 4246403 ·Zbl 1472.46071
[22]Neshveyev, S., KMS states on the \(C^\ast \)-algebras of non-principal groupoids, J. Oper. Theory, 70, 2, 513-530, 2013, MR 3138368 ·Zbl 1299.46067
[23]Neshveyev, S.; Schwartz, G., Non-Hausdorff étale groupoids and \(C^\ast \)-algebras of left cancellative monoids, Münster J. Math., 16, 1, 147-175, 2023, MR 4563262 ·Zbl 1518.46037
[24]Ozawa, N., Lecture on the Furstenberg boundary and C^⁎-simplicity, 2014, available at
[25]Phillips, N. C., Crossed products of the Cantor set by free minimal actions of \(\mathbb{Z}^d\), Commun. Math. Phys., 256, 1, 1-42, 2005, MR 2134336 ·Zbl 1084.46056
[26]Renault, J., A Groupoid Approach to \(C^\ast \)-Algebras, Lecture Notes in Mathematics, vol. 793, 1980, Springer: Springer Berlin, MR 584266 ·Zbl 0433.46049
[27]Renault, J., The ideal structure of groupoid crossed product \(C^\ast \)-algebras, J. Oper. Theory, 25, 1, 3-36, 1991, With an appendix by Georges Skandalis. MR 1191252 ·Zbl 0786.46050
[28]Sauvageot, J.-L., Idéaux primitifs induits dans les produits croisés, J. Funct. Anal., 32, 3, 381-392, 1979, MR 0538862 ·Zbl 0434.46036
[29]Sims, A.; Williams, D. P., The primitive ideals of some étale groupoid C^⁎-algebras, Algebr. Represent. Theory, 19, 2, 255-276, 2016 ·Zbl 1357.46051
[30]Starling, C., A new uniqueness theorem for the tight C^⁎-algebra of an inverse semigroup, C. R. Math. Rep. Acad. Sci. Canada, 44, 4, 88-112, 2022 ·Zbl 07908847
[31]Willett, R., A non-amenable groupoid whose maximal and reduced \(C^\ast \)-algebras are the same, Münster J. Math., 8, 1, 241-252, 2015, MR 3549528 ·Zbl 1369.46064
[32]Williams, D. P., The topology on the primitive ideal space of transformation group \(C^\ast \)-algebras and C.C.R. transformation group \(C^\ast \)-algebras, Trans. Am. Math. Soc., 266, 2, 335-359, 1981, MR 0617538 ·Zbl 0474.46057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp