Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quantum Sugawara operators in type \(A\).(English)Zbl 1551.17016

Summary: The quantum Sugawara operators associated with a simple Lie algebra \(\mathfrak{g}\) are elements of the center of a completion of the quantum affine algebra \(\mathrm{U}_q (\hat{\mathfrak{g}})\) at the critical level. By the foundational work of Reshetikhin and Semenov-Tian-Shansky (1990), such operators occur as coefficients of a formal Laurent series \(\ell_V(z)\) associated with every finite-dimensional representation \(V\) of the quantum affine algebra. As demonstrated by Ding and Etingof (1994), the quantum Sugawara operators generate all singular vectors in generic Verma modules over \(\mathrm{U}_q (\hat{\mathfrak{g}})\) at the critical level and give rise to a commuting family of transfer matrices. Furthermore, as observed by E. Frenkel and Reshetikhin (1999), the operators are closely related with the \(q\)-characters and \(q\)-deformed \(\mathcal{W}\)-algebras via the Harish-Chandra homomorphism.
We produce explicit quantum Sugawara operators for the quantum affine algebra of type \(A\) which are associated with primitive idempotents of the Hecke algebra and parameterized by Young diagrams. This opens a way to understand all the related objects via their explicit constructions. We consider one application by calculating the Harish-Chandra images of the quantum Sugawara operators. The operators act by scalar multiplication in the \(q\)-deformed Wakimoto modules and we calculate the eigenvalues by identifying them with the Harish-Chandra images.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
20C08 Hecke algebras and their representations

Cite

References:

[1]Awata, H.; Odake, S.; Shiraishi, J., Free boson realization of \(U_q( \hat{\mathfrak{sl}}_N)\), Commun. Math. Phys., 162, 61-83, 1994 ·Zbl 0797.17009
[2]Brundan, J.; Kleshchev, A., Representations of shifted Yangians and finite W-algebras, Mem. Am. Math. Soc., 196, 918, 2008 ·Zbl 1169.17009
[3]Cherednik, I. V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J., 54, 563-577, 1987 ·Zbl 0645.17006
[4]Ding, J.; Etingof, P., The center of a quantum affine algebra at the critical level, Math. Res. Lett., 1, 469-480, 1994 ·Zbl 0833.17008
[5]Dipper, R.; James, D., Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., 52, 20-52, 1986 ·Zbl 0587.20007
[6]Dipper, R.; James, D., Blocks and idempotents of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., 54, 57-82, 1987 ·Zbl 0615.20009
[7]Drinfeld, V. G., Quantum groups, (International Congress of Mathematicians. International Congress of Mathematicians, Berkeley, 1986, 1987, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 798-820 ·Zbl 0667.16003
[8]Frappat, L.; Jing, N.; Molev, A.; Ragoucy, E., Higher Sugawara operators for the quantum affine algebras of type A, Commun. Math. Phys., 345, 631-657, 2016 ·Zbl 1395.17049
[9]Frenkel, E., Langlands Correspondence for Loop Groups, Cambridge Studies in Advanced Mathematics, vol. 103, 2007, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1133.22009
[10]Frenkel, E.; Mukhin, E., The Hopf algebra \(\operatorname{Rep} U_q \hat{\mathfrak{gl}}_\infty \), Sel. Math., 8, 537-635, 2002 ·Zbl 1034.17009
[11]Frenkel, E.; Reshetikhin, N., The q-characters of representations of quantum affine algebras and deformations of \(\mathcal{W} \)-algebras, Contemp. Math., 248, 163-205, 1999 ·Zbl 0973.17015
[12]Frenkel, I. B.; Reshetikhin, N. Yu., Quantum affine algebras and holonomic difference equations, Commun. Math. Phys., 146, 1-60, 1992 ·Zbl 0760.17006
[13]Geck, M.; Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs. New Series, vol. 21, 2000, The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York ·Zbl 0996.20004
[14]Hoefsmit, P. N., Representations of Hecke algebras of finite groups with BN-pairs of classical type, 1974, The University of British: The University of British Columbia (Canada), PhD Thesis
[15]Isaev, A. P.; Molev, A. I.; Oskin, A. F., On the idempotents of Hecke algebra, Lett. Math. Phys., 85, 79-90, 2008 ·Zbl 1167.20303
[16]Jimbo, M., A q-analogue of \(U_q( \mathfrak{gl}(N + 1))\), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys., 11, 247-252, 1986 ·Zbl 0602.17005
[17]Jing, N.; Kožić, S.; Molev, A.; Yang, F., Center of the quantum affine vertex algebra in type A, J. Algebra, 496, 138-186, 2018 ·Zbl 1432.17014
[18]Kožić, S.; Molev, A., Center of the quantum affine vertex algebra associated with trigonometric R-matrix, J. Phys. A, Math. Theor., 50, Article 325201 pp., 2017, 21pp ·Zbl 1428.17018
[19]Méliot, P.-L., Representation Theory of Symmetric Groups, Discrete Mathematics and Its Applications (Boca Raton), 2017, CRC Press: CRC Press Boca Raton, FL ·Zbl 1418.20001
[20]Molev, A., Sugawara Operators for Classical Lie Algebras, Mathematical Surveys and Monographs, vol. 229, 2018, AMS: AMS Providence, RI ·Zbl 1395.17001
[21]Nazarov, M., A mixed hook-length formula for affine Hecke algebras, Eur. J. Comb., 25, 1345-1376, 2004 ·Zbl 1065.20010
[22]Okounkov, A., Quantum immanants and higher Capelli identities, Transform. Groups, 1, 99-126, 1996 ·Zbl 0864.17014
[23]Reshetikhin, N. Yu.; Semenov-Tian-Shansky, M. A., Central extensions of quantum current groups, Lett. Math. Phys., 19, 133-142, 1990 ·Zbl 0692.22011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp