[1] | Awata, H.; Odake, S.; Shiraishi, J., Free boson realization of \(U_q( \hat{\mathfrak{sl}}_N)\), Commun. Math. Phys., 162, 61-83, 1994 ·Zbl 0797.17009 |
[2] | Brundan, J.; Kleshchev, A., Representations of shifted Yangians and finite W-algebras, Mem. Am. Math. Soc., 196, 918, 2008 ·Zbl 1169.17009 |
[3] | Cherednik, I. V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J., 54, 563-577, 1987 ·Zbl 0645.17006 |
[4] | Ding, J.; Etingof, P., The center of a quantum affine algebra at the critical level, Math. Res. Lett., 1, 469-480, 1994 ·Zbl 0833.17008 |
[5] | Dipper, R.; James, D., Representations of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., 52, 20-52, 1986 ·Zbl 0587.20007 |
[6] | Dipper, R.; James, D., Blocks and idempotents of Hecke algebras of general linear groups, Proc. Lond. Math. Soc., 54, 57-82, 1987 ·Zbl 0615.20009 |
[7] | Drinfeld, V. G., Quantum groups, (International Congress of Mathematicians. International Congress of Mathematicians, Berkeley, 1986, 1987, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 798-820 ·Zbl 0667.16003 |
[8] | Frappat, L.; Jing, N.; Molev, A.; Ragoucy, E., Higher Sugawara operators for the quantum affine algebras of type A, Commun. Math. Phys., 345, 631-657, 2016 ·Zbl 1395.17049 |
[9] | Frenkel, E., Langlands Correspondence for Loop Groups, Cambridge Studies in Advanced Mathematics, vol. 103, 2007, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1133.22009 |
[10] | Frenkel, E.; Mukhin, E., The Hopf algebra \(\operatorname{Rep} U_q \hat{\mathfrak{gl}}_\infty \), Sel. Math., 8, 537-635, 2002 ·Zbl 1034.17009 |
[11] | Frenkel, E.; Reshetikhin, N., The q-characters of representations of quantum affine algebras and deformations of \(\mathcal{W} \)-algebras, Contemp. Math., 248, 163-205, 1999 ·Zbl 0973.17015 |
[12] | Frenkel, I. B.; Reshetikhin, N. Yu., Quantum affine algebras and holonomic difference equations, Commun. Math. Phys., 146, 1-60, 1992 ·Zbl 0760.17006 |
[13] | Geck, M.; Pfeiffer, G., Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs. New Series, vol. 21, 2000, The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York ·Zbl 0996.20004 |
[14] | Hoefsmit, P. N., Representations of Hecke algebras of finite groups with BN-pairs of classical type, 1974, The University of British: The University of British Columbia (Canada), PhD Thesis |
[15] | Isaev, A. P.; Molev, A. I.; Oskin, A. F., On the idempotents of Hecke algebra, Lett. Math. Phys., 85, 79-90, 2008 ·Zbl 1167.20303 |
[16] | Jimbo, M., A q-analogue of \(U_q( \mathfrak{gl}(N + 1))\), Hecke algebra and the Yang-Baxter equation, Lett. Math. Phys., 11, 247-252, 1986 ·Zbl 0602.17005 |
[17] | Jing, N.; Kožić, S.; Molev, A.; Yang, F., Center of the quantum affine vertex algebra in type A, J. Algebra, 496, 138-186, 2018 ·Zbl 1432.17014 |
[18] | Kožić, S.; Molev, A., Center of the quantum affine vertex algebra associated with trigonometric R-matrix, J. Phys. A, Math. Theor., 50, Article 325201 pp., 2017, 21pp ·Zbl 1428.17018 |
[19] | Méliot, P.-L., Representation Theory of Symmetric Groups, Discrete Mathematics and Its Applications (Boca Raton), 2017, CRC Press: CRC Press Boca Raton, FL ·Zbl 1418.20001 |
[20] | Molev, A., Sugawara Operators for Classical Lie Algebras, Mathematical Surveys and Monographs, vol. 229, 2018, AMS: AMS Providence, RI ·Zbl 1395.17001 |
[21] | Nazarov, M., A mixed hook-length formula for affine Hecke algebras, Eur. J. Comb., 25, 1345-1376, 2004 ·Zbl 1065.20010 |
[22] | Okounkov, A., Quantum immanants and higher Capelli identities, Transform. Groups, 1, 99-126, 1996 ·Zbl 0864.17014 |
[23] | Reshetikhin, N. Yu.; Semenov-Tian-Shansky, M. A., Central extensions of quantum current groups, Lett. Math. Phys., 19, 133-142, 1990 ·Zbl 0692.22011 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.