Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Minimal rank of universal lattices and number of indecomposable elements in real multiquadratic fields.(English)Zbl 1550.11052

Author’s abstract: We establish an upper bound on the number of real multiquadratic fields that admit a universal quadratic lattice of a given rank, or contain a given amount of indecomposable elements modulo totally positive units, obtaining density zero statements. We also study the structure of indecomposable elements in real biquadratic fields, and compute a system of indecomposable elements modulo totally positive units for some families of real biquadratic fields.

MSC:

11E12 Quadratic forms over global rings and fields
11E20 General ternary and quaternary quadratic forms; forms of more than two variables
11H55 Quadratic forms (reduction theory, extreme forms, etc.)
11R20 Other abelian and metabelian extensions
11R80 Totally real fields
11A55 Continued fractions

Cite

References:

[1]Bhargava, M., On the Conway-Schneeberger fifteen theorem, (Bayer-Fluckiger, E.; Lewis, D.; Ranicki, A., Quadratic Forms and Their Applications. Quadratic Forms and Their Applications, Contemporary Mathematics, vol. 272, 2000), 27-37 ·Zbl 0987.11027
[2]Bhargava, M.; Hanke, J., Universal Quadratic Forms and the 290-Theorem, 2011, in preprint
[3]Blomer, V.; Kala, V., Number fields without n-ary universal quadratic forms, Math. Proc. Camb. Philos. Soc., 159, 239-252, 2015 ·Zbl 1371.11084
[4]Blomer, V.; Kala, V., On the rank of universal quadratic forms over real quadratic fields, Doc. Math., 23, 15-34, 2018 ·Zbl 1396.11061
[5]Chan, W.-K.; Kim, M.-H.; Raghavan, S., Ternary universal integral quadratic forms over real quadratic fields, Jpn. J. Math., 22, 2, 263-273, 1996 ·Zbl 0868.11020
[6]Chatelain, D., Bases des entiers des corps composés par des extensions quadratiques de \(\mathbb{Q} \), Ann. Sci. Univ. Besançon Math., 6, 38, 1973 ·Zbl 0289.12002
[7]Colmez, P., Résidu en s=1 des fonctions zêta p-adiques, Invent. Math., 91, 371-389, 1988 ·Zbl 0651.12010
[8]Čech, M.; Lachman, D.; Svoboda, J.; Tinková, M.; Zemková, K., Universal quadratic forms and indecomposables over biquadratic fields, Math. Nachr., 292, 3, 540-555, 2019 ·Zbl 1456.11036
[9]Diaz, F.; Diaz, y.; Friedman, E., Signed fundamental domains for totally real number fields, Proc. Lond. Math. Soc., 108, 3, 965-988, 2014 ·Zbl 1325.11117
[10]Dress, A.; Scharlau, R., Indecomposable totally positive numbers in real quadratic orders, J. Number Theory, 14, 292-306, 1982 ·Zbl 0507.12002
[11]Erdős, P., Arithmetic properties of polynomials, J. Lond. Math. Soc., 28, 416-425, 1953 ·Zbl 0051.27703
[12]Gil-Muñoz, D.; Tinková, M., Additive structure of non-monogenic simplest cubic fields, 2022, in preprint
[13]Hančl, J.; Turek, O., One-sided Diophantine approximations, J. Phys. A, Math. Theor., 52, Article 045205 pp., 2019 ·Zbl 1422.81108
[14]Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers, 2008, Oxford University Press ·Zbl 1159.11001
[15]Hsia, J. S.; Kitaoka, Y.; Kneser, M., Representations of positive definite quadratic forms, J. Reine Angew. Math., 301, 132-141, 1978 ·Zbl 0374.10013
[16]Kala, V., Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Aust. Math. Soc., 94, 7-14, 2016 ·Zbl 1345.11025
[17]Kala, V., Number fields without universal quadratic forms of small rank exist in most degrees, Math. Proc. Camb. Philos. Soc., 174, 225-231, 2023 ·Zbl 1520.11047
[18]Kala, V.; Svoboda, J., Universal quadratic forms over multiquadratic fields, Ramanujan J., 48, 151-157, 2019 ·Zbl 1428.11071
[19]Kala, V.; Tinková, M., Universal quadratic forms, small norms, and traces in families of number fields, Int. Math. Res. Not., 2023, 9, 7541-7577, 2023 ·Zbl 1531.11037
[20]Kala, V.; Yatsyna, P., Lifting problem for universal quadratic forms, Adv. Math., 377, Article 107497 pp., 2021 ·Zbl 1462.11028
[21]Kala, V.; Yatsyna, P.; Żmija, B., Real quadratic fields with a universal form of given rank have density zero, 2023, in preprint
[22]Kim, B. M., Universal octonary diagonal forms over some real quadratic fields, Comment. Math. Helv., 75, 410-414, 2000 ·Zbl 1120.11301
[23]Kim, B. M.; Kim, M.-H.; Park, D., Real quadratic fields admitting universal lattices of rank 7, J. Number Theory, 233, 456-466, 2022 ·Zbl 1487.11037
[24]Krásenský, J.; Tinková, M.; Zemková, K., There are no universal ternary quadratic forms over biquadratic fields, Proc. Edinb. Math. Soc., 2, 63, 861-912, 2020 ·Zbl 1460.11042
[25]Kubota, T., Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J., 10, 65-85, 1956 ·Zbl 0074.03001
[26]Maaß, H., Über die Darstellung total positiver Zahlen des Körpers \(R(\sqrt{ 5})\) als Summe von drei Quadraten, Abh. Math. Semin. Univ. Hamb., 14, 185-191, 1941 ·JFM 67.0103.02
[27]Martinet, J., Perfect Lattices in Euclidean Spaces, Grundlehren der Mathematischen Wissenschaften, vol. 327, 2003, Springer: Springer Berlin Heidelberg ·Zbl 1017.11031
[28]Neukirch, J., Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, 1999, Springer: Springer Berlin-Heidelberg ·Zbl 0956.11021
[29]Perron, O., Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, 1977, Vieweg+Teubner Verlag Wiesbaden
[30]Regev, O.; Stephens-Davidowitz, N., A simple proof of a reverse Minkowski theorem for integral lattices, 2023, in preprint
[31]Schmal. Diskriminanten, B., \( \mathbb{Z} \)-Ganzheitsbasen und relative Ganzheitsbasen bei multiquadratischen Zahlkörpern, Arch. Math., 52, 245-257, 1989 ·Zbl 0684.12006
[32]Siegel, C. L., Sums of m-th powers of algebraic integers, Ann. Math., 46, 313-339, 1945 ·Zbl 0063.07010
[33]Williams, K. S., Integers of biquadratic fields, Can. Math. Bull., 13, 519-526, 1970 ·Zbl 0205.35401
[34]Wright, D., Distribution of discriminants of abelian extensions, Proc. Lond. Math. Soc. (3), 58, 1, 17-50, 1989 ·Zbl 0628.12006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp