[1] | Bhargava, M., On the Conway-Schneeberger fifteen theorem, (Bayer-Fluckiger, E.; Lewis, D.; Ranicki, A., Quadratic Forms and Their Applications. Quadratic Forms and Their Applications, Contemporary Mathematics, vol. 272, 2000), 27-37 ·Zbl 0987.11027 |
[2] | Bhargava, M.; Hanke, J., Universal Quadratic Forms and the 290-Theorem, 2011, in preprint |
[3] | Blomer, V.; Kala, V., Number fields without n-ary universal quadratic forms, Math. Proc. Camb. Philos. Soc., 159, 239-252, 2015 ·Zbl 1371.11084 |
[4] | Blomer, V.; Kala, V., On the rank of universal quadratic forms over real quadratic fields, Doc. Math., 23, 15-34, 2018 ·Zbl 1396.11061 |
[5] | Chan, W.-K.; Kim, M.-H.; Raghavan, S., Ternary universal integral quadratic forms over real quadratic fields, Jpn. J. Math., 22, 2, 263-273, 1996 ·Zbl 0868.11020 |
[6] | Chatelain, D., Bases des entiers des corps composés par des extensions quadratiques de \(\mathbb{Q} \), Ann. Sci. Univ. Besançon Math., 6, 38, 1973 ·Zbl 0289.12002 |
[7] | Colmez, P., Résidu en s=1 des fonctions zêta p-adiques, Invent. Math., 91, 371-389, 1988 ·Zbl 0651.12010 |
[8] | Čech, M.; Lachman, D.; Svoboda, J.; Tinková, M.; Zemková, K., Universal quadratic forms and indecomposables over biquadratic fields, Math. Nachr., 292, 3, 540-555, 2019 ·Zbl 1456.11036 |
[9] | Diaz, F.; Diaz, y.; Friedman, E., Signed fundamental domains for totally real number fields, Proc. Lond. Math. Soc., 108, 3, 965-988, 2014 ·Zbl 1325.11117 |
[10] | Dress, A.; Scharlau, R., Indecomposable totally positive numbers in real quadratic orders, J. Number Theory, 14, 292-306, 1982 ·Zbl 0507.12002 |
[11] | Erdős, P., Arithmetic properties of polynomials, J. Lond. Math. Soc., 28, 416-425, 1953 ·Zbl 0051.27703 |
[12] | Gil-Muñoz, D.; Tinková, M., Additive structure of non-monogenic simplest cubic fields, 2022, in preprint |
[13] | Hančl, J.; Turek, O., One-sided Diophantine approximations, J. Phys. A, Math. Theor., 52, Article 045205 pp., 2019 ·Zbl 1422.81108 |
[14] | Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers, 2008, Oxford University Press ·Zbl 1159.11001 |
[15] | Hsia, J. S.; Kitaoka, Y.; Kneser, M., Representations of positive definite quadratic forms, J. Reine Angew. Math., 301, 132-141, 1978 ·Zbl 0374.10013 |
[16] | Kala, V., Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Aust. Math. Soc., 94, 7-14, 2016 ·Zbl 1345.11025 |
[17] | Kala, V., Number fields without universal quadratic forms of small rank exist in most degrees, Math. Proc. Camb. Philos. Soc., 174, 225-231, 2023 ·Zbl 1520.11047 |
[18] | Kala, V.; Svoboda, J., Universal quadratic forms over multiquadratic fields, Ramanujan J., 48, 151-157, 2019 ·Zbl 1428.11071 |
[19] | Kala, V.; Tinková, M., Universal quadratic forms, small norms, and traces in families of number fields, Int. Math. Res. Not., 2023, 9, 7541-7577, 2023 ·Zbl 1531.11037 |
[20] | Kala, V.; Yatsyna, P., Lifting problem for universal quadratic forms, Adv. Math., 377, Article 107497 pp., 2021 ·Zbl 1462.11028 |
[21] | Kala, V.; Yatsyna, P.; Żmija, B., Real quadratic fields with a universal form of given rank have density zero, 2023, in preprint |
[22] | Kim, B. M., Universal octonary diagonal forms over some real quadratic fields, Comment. Math. Helv., 75, 410-414, 2000 ·Zbl 1120.11301 |
[23] | Kim, B. M.; Kim, M.-H.; Park, D., Real quadratic fields admitting universal lattices of rank 7, J. Number Theory, 233, 456-466, 2022 ·Zbl 1487.11037 |
[24] | Krásenský, J.; Tinková, M.; Zemková, K., There are no universal ternary quadratic forms over biquadratic fields, Proc. Edinb. Math. Soc., 2, 63, 861-912, 2020 ·Zbl 1460.11042 |
[25] | Kubota, T., Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J., 10, 65-85, 1956 ·Zbl 0074.03001 |
[26] | Maaß, H., Über die Darstellung total positiver Zahlen des Körpers \(R(\sqrt{ 5})\) als Summe von drei Quadraten, Abh. Math. Semin. Univ. Hamb., 14, 185-191, 1941 ·JFM 67.0103.02 |
[27] | Martinet, J., Perfect Lattices in Euclidean Spaces, Grundlehren der Mathematischen Wissenschaften, vol. 327, 2003, Springer: Springer Berlin Heidelberg ·Zbl 1017.11031 |
[28] | Neukirch, J., Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, 1999, Springer: Springer Berlin-Heidelberg ·Zbl 0956.11021 |
[29] | Perron, O., Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, 1977, Vieweg+Teubner Verlag Wiesbaden |
[30] | Regev, O.; Stephens-Davidowitz, N., A simple proof of a reverse Minkowski theorem for integral lattices, 2023, in preprint |
[31] | Schmal. Diskriminanten, B., \( \mathbb{Z} \)-Ganzheitsbasen und relative Ganzheitsbasen bei multiquadratischen Zahlkörpern, Arch. Math., 52, 245-257, 1989 ·Zbl 0684.12006 |
[32] | Siegel, C. L., Sums of m-th powers of algebraic integers, Ann. Math., 46, 313-339, 1945 ·Zbl 0063.07010 |
[33] | Williams, K. S., Integers of biquadratic fields, Can. Math. Bull., 13, 519-526, 1970 ·Zbl 0205.35401 |
[34] | Wright, D., Distribution of discriminants of abelian extensions, Proc. Lond. Math. Soc. (3), 58, 1, 17-50, 1989 ·Zbl 0628.12006 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.