Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Characterizing slopes for satellite knots.(English)Zbl 1548.57018

For a given knot \(K\) in the \(3\)-sphere \(S^3\), we say that \(p/q\) is a characterizing slope for \(K\) if whenever the result of \(p/q\)-surgery on a knot \(K'\) in \(S^3\) is orientation preservingly homeomorphic to the result of \(p/q\)-surgery on \(K\), then \(K'\) is isotopic to \(K\).
For the unknot, the trefoil knots and the figure eight knot, all non-trivial slopes are known to be characterizing slopes; see [P. B. Kronheimer et al., Ann. Math. (2) 165, No. 2, 457–546 (2007;Zbl 1204.57038) andP. Ozsváth andZ. Szabó, J. Symplectic Geom. 17, No. 1, 251–265 (2019;Zbl 1444.57007)].M. Lackenby [Math. Ann. 374, No. 1–2, 429–446 (2019;Zbl 1421.57009)] showed that for any hyperbolic knot, slopes \(p/q\) are characterizing slopes provided \(|q|\) is sufficiently large. For torus knots,D. McCoy [Commun. Anal. Geom. 28, No. 7, 1647–1682 (2020;Zbl 1468.57006)] showed that there are only finitely many non-integral, non-characterizing slopes.
In the paper under review, the author establishes that any slope \(p/q\) is characterizing for any satellite knot provided \(|q|\) is sufficiently large. Hence, together with the results of Lackenby and McCoy, any slope \(p/q\) is characterizing for any knot provided \(|q|\) is sufficiently large. Furthermore, for composite knots \(K\), the author proves that every non-integral slope is characterizing for \(K\). As a corollary to this result, for infinitely many composite knots given in [K. L. Baker andK. Motegi, Algebr. Geom. Topol. 18, No. 3, 1461–1480 (2018;Zbl 1422.57010)] the author proves that the set of non-characterizing slopes consists of all integral slopes. It should be mentioned that these are the first examples of knots for which the complete list of non-characterizing slopes is determined and is not empty.

MSC:

57K10 Knot theory
57K30 General topology of 3-manifolds

Cite

References:

[1]Agol, I., Bounds on exceptional Dehn filling, Geom. Topol., 4, 431-449, 2000 ·Zbl 0959.57009
[2]Baker, K.; Motegi, K., Noncharacterizing slopes for hyperbolic knots, Algebraic Geom. Topol., 18, 1461-1480, 2018 ·Zbl 1422.57010
[3]Boyer, S.; Zhang, X., On Culler-Shalen seminorms and Dehn filling, Ann. Math. (2), 148, 737, 1998 ·Zbl 1007.57016
[4]Budney, R., JSJ-decompositions of knot and link complements in \(S^3\), Enseign. Math., 52, 319-359, 2006 ·Zbl 1114.57004
[5]Cooper, D.; Lackenby, M., Dehn surgery and negatively curved 3-manifolds, J. Differ. Geom., 50, 591-624, 1998 ·Zbl 0931.57014
[6]Culler, M.; Gordon, C. M.; Luecke, J.; Shalen, P. B., Dehn surgery on knots, Ann. Math. (2), 125, 237, 1987 ·Zbl 0633.57006
[7]Eudave-Muñoz, M., Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots, (Kazez, W. H., Proceedings of the 1993 International Georgia Topology Conference, 1997, AMS: AMS Providence, RI), 35-61 ·Zbl 0889.57023
[8]Gabai, D.; Haraway, R.; Meyerhoff, R.; Thurston, N.; Yarmola, A., Hyperbolic 3-manifolds of low cusp volume, 2021
[9]Gordon, C. M., Dehn surgery and satellite knots, Trans. Am. Math. Soc., 275, 687-708, 1983 ·Zbl 0519.57005
[10]Gordon, C. M.; Luecke, J., Only integral Dehn surgeries can yield reducible manifolds, Math. Proc. Camb. Philos. Soc., 102, 97-101, 1987 ·Zbl 0655.57500
[11]Gordon, C. M.; Luecke, J., Knots are determined by their complements, Bull. Am. Math. Soc., 20, 83-87, 1989 ·Zbl 0672.57009
[12]Gordon, C. M.; Luecke, J., Dehn surgeries on knots creating essential tori, I, Commun. Anal. Geom., 3, 597-644, 1995 ·Zbl 0865.57015
[13]Gordon, C. M.; Luecke, J., Reducible manifolds and Dehn surgery, Topology, 35, 385-409, 1996 ·Zbl 0859.57016
[14]Gordon, C. M.; Luecke, J., Toroidal and boundary-reducing Dehn fillings, Topol. Appl., 93, 77-90, 1999 ·Zbl 0926.57019
[15]Gordon, C. M.; Luecke, J., Non-integral toroidal Dehn surgeries, Commun. Anal. Geom., 12, 417-485, 2004 ·Zbl 1062.57006
[16]Gordon, C. M.; Wu, Y. Q., Annular and boundary reducing Dehn fillings, Topology, 39, 531-548, 2000 ·Zbl 0944.57014
[17]Jaco, W. H.; Shalen, P. B., Seifert fibered spaces in 3-manifolds, Mem. Am. Math. Soc., 21, 0-0 1979 ·Zbl 0415.57005
[18]Johannson, K., Homotopy Equivalences of 3-Manifolds with Boundaries, Lecture Notes in Mathematics, vol. 761, 1979, Springer-Verlag: Springer-Verlag Berlin ·Zbl 0412.57007
[19]Kronheimer, P.; Mrowka, T.; Ozsváth, P.; Szabó, Z., Monopoles and lens space surgeries, Ann. Math. (2), 165, 457-546, 2007 ·Zbl 1204.57038
[20]Lackenby, M., Word hyperbolic Dehn surgery, Invent. Math., 140, 243-282, 2000 ·Zbl 0947.57016
[21]Lackenby, M., Every knot has characterising slopes, Math. Ann., 374, 429-446, 2019 ·Zbl 1421.57009
[22]Lackenby, M.; Meyerhoff, R., The maximal number of exceptional Dehn surgeries, Invent. Math., 191, 341-382, 2013 ·Zbl 1263.57013
[23]McCoy, D., Non-integer characterizing slopes for torus knots, Commun. Anal. Geom., 28, 1647-1682, 2020 ·Zbl 1468.57006
[24]Moser, L., Elementary surgery along a torus knot, Pac. J. Math., 38, 737-745, 1971 ·Zbl 0202.54701
[25]Ozsváth, P.; Szabó, Z., The Dehn surgery characterization of the trefoil and the figure eight knot, J. Symplectic Geom., 17, 251-265, 2019 ·Zbl 1444.57007
[26]Scharlemann, M., Producing reducible 3-manifolds by surgery on a knot, Topology, 29, 481-500, 1990 ·Zbl 0727.57015
[27]Wakelin, L., The Dehn surgery characterisation of Whitehead doubles, 2023
[28]Wu, Y. Q., Incompressibility of surfaces in surgered 3-manifolds, Topology, 31, 271-279, 1992 ·Zbl 0872.57022
[29]Wu, Y. Q., Sutured manifold hierarchies, essential laminations, and Dehn surgery, J. Differ. Geom., 48, 407-437, 1998 ·Zbl 0917.57015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp