[1] | Agol, I., Bounds on exceptional Dehn filling, Geom. Topol., 4, 431-449, 2000 ·Zbl 0959.57009 |
[2] | Baker, K.; Motegi, K., Noncharacterizing slopes for hyperbolic knots, Algebraic Geom. Topol., 18, 1461-1480, 2018 ·Zbl 1422.57010 |
[3] | Boyer, S.; Zhang, X., On Culler-Shalen seminorms and Dehn filling, Ann. Math. (2), 148, 737, 1998 ·Zbl 1007.57016 |
[4] | Budney, R., JSJ-decompositions of knot and link complements in \(S^3\), Enseign. Math., 52, 319-359, 2006 ·Zbl 1114.57004 |
[5] | Cooper, D.; Lackenby, M., Dehn surgery and negatively curved 3-manifolds, J. Differ. Geom., 50, 591-624, 1998 ·Zbl 0931.57014 |
[6] | Culler, M.; Gordon, C. M.; Luecke, J.; Shalen, P. B., Dehn surgery on knots, Ann. Math. (2), 125, 237, 1987 ·Zbl 0633.57006 |
[7] | Eudave-Muñoz, M., Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots, (Kazez, W. H., Proceedings of the 1993 International Georgia Topology Conference, 1997, AMS: AMS Providence, RI), 35-61 ·Zbl 0889.57023 |
[8] | Gabai, D.; Haraway, R.; Meyerhoff, R.; Thurston, N.; Yarmola, A., Hyperbolic 3-manifolds of low cusp volume, 2021 |
[9] | Gordon, C. M., Dehn surgery and satellite knots, Trans. Am. Math. Soc., 275, 687-708, 1983 ·Zbl 0519.57005 |
[10] | Gordon, C. M.; Luecke, J., Only integral Dehn surgeries can yield reducible manifolds, Math. Proc. Camb. Philos. Soc., 102, 97-101, 1987 ·Zbl 0655.57500 |
[11] | Gordon, C. M.; Luecke, J., Knots are determined by their complements, Bull. Am. Math. Soc., 20, 83-87, 1989 ·Zbl 0672.57009 |
[12] | Gordon, C. M.; Luecke, J., Dehn surgeries on knots creating essential tori, I, Commun. Anal. Geom., 3, 597-644, 1995 ·Zbl 0865.57015 |
[13] | Gordon, C. M.; Luecke, J., Reducible manifolds and Dehn surgery, Topology, 35, 385-409, 1996 ·Zbl 0859.57016 |
[14] | Gordon, C. M.; Luecke, J., Toroidal and boundary-reducing Dehn fillings, Topol. Appl., 93, 77-90, 1999 ·Zbl 0926.57019 |
[15] | Gordon, C. M.; Luecke, J., Non-integral toroidal Dehn surgeries, Commun. Anal. Geom., 12, 417-485, 2004 ·Zbl 1062.57006 |
[16] | Gordon, C. M.; Wu, Y. Q., Annular and boundary reducing Dehn fillings, Topology, 39, 531-548, 2000 ·Zbl 0944.57014 |
[17] | Jaco, W. H.; Shalen, P. B., Seifert fibered spaces in 3-manifolds, Mem. Am. Math. Soc., 21, 0-0 1979 ·Zbl 0415.57005 |
[18] | Johannson, K., Homotopy Equivalences of 3-Manifolds with Boundaries, Lecture Notes in Mathematics, vol. 761, 1979, Springer-Verlag: Springer-Verlag Berlin ·Zbl 0412.57007 |
[19] | Kronheimer, P.; Mrowka, T.; Ozsváth, P.; Szabó, Z., Monopoles and lens space surgeries, Ann. Math. (2), 165, 457-546, 2007 ·Zbl 1204.57038 |
[20] | Lackenby, M., Word hyperbolic Dehn surgery, Invent. Math., 140, 243-282, 2000 ·Zbl 0947.57016 |
[21] | Lackenby, M., Every knot has characterising slopes, Math. Ann., 374, 429-446, 2019 ·Zbl 1421.57009 |
[22] | Lackenby, M.; Meyerhoff, R., The maximal number of exceptional Dehn surgeries, Invent. Math., 191, 341-382, 2013 ·Zbl 1263.57013 |
[23] | McCoy, D., Non-integer characterizing slopes for torus knots, Commun. Anal. Geom., 28, 1647-1682, 2020 ·Zbl 1468.57006 |
[24] | Moser, L., Elementary surgery along a torus knot, Pac. J. Math., 38, 737-745, 1971 ·Zbl 0202.54701 |
[25] | Ozsváth, P.; Szabó, Z., The Dehn surgery characterization of the trefoil and the figure eight knot, J. Symplectic Geom., 17, 251-265, 2019 ·Zbl 1444.57007 |
[26] | Scharlemann, M., Producing reducible 3-manifolds by surgery on a knot, Topology, 29, 481-500, 1990 ·Zbl 0727.57015 |
[27] | Wakelin, L., The Dehn surgery characterisation of Whitehead doubles, 2023 |
[28] | Wu, Y. Q., Incompressibility of surfaces in surgered 3-manifolds, Topology, 31, 271-279, 1992 ·Zbl 0872.57022 |
[29] | Wu, Y. Q., Sutured manifold hierarchies, essential laminations, and Dehn surgery, J. Differ. Geom., 48, 407-437, 1998 ·Zbl 0917.57015 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.