[1] | Breuer, T.; Guralnick, R. M.; Kantor, W. M., Probabilistic generation of finite simple groups, II, J. Algebra, 320, 443-494, 2008 ·Zbl 1181.20013 |
[2] | Britnell, J., Cyclic, separable and semisimple matrices in the special linear groups over a finite field, J. Lond. Math. Soc., 66, 605-622, 2002 ·Zbl 1050.20034 |
[3] | Britnell, J., Cyclic, separable and semisimple transformations in the special unitary groups over a finite field, J. Group Theory, 9, 547-569, 2006 ·Zbl 1105.20041 |
[4] | Burness, T. C.; Guralnick, R. M.; Harper, S., The spread of a finite group, Ann. Math., 193, 619-687, 2021 ·Zbl 1480.20081 |
[5] | T.C. Burness, R.M. Guralnick, S. Harper, Probabilistic \(\frac{ 3}{ 2} \)-generation of finite groups, preprint. ·Zbl 1480.20081 |
[6] | Dalla Volta, F.; Lucchini, A., Generation of almost simple groups, J. Algebra, 2, 194-223, 1995 ·Zbl 0839.20021 |
[7] | Dixon, J. D., The probability of generating the symmetric group, Math. Z., 110, 199-205, 1969 ·Zbl 0176.29901 |
[8] | Eberhard, S.; Garzoni, D., Conjugacy classes of derangements in finite groups of Lie type, Trans. Am. Math. Soc., 2024, in press |
[9] | Fulman, J., Cycle indices for the finite classical groups, J. Group Theory, 2, 251-289, 1999 ·Zbl 0943.20048 |
[10] | Fulman, J.; Guralnick, R. M., Conjugacy class properties of the extension of \(G L(n, q)\) generated by the inverse transpose involution, J. Algebra, 275, 356-396, 2004 ·Zbl 1065.20065 |
[11] | Fulman, J.; Guralnick, R. M., Derangements in subspace actions of finite classical groups, Trans. Amer. Math. Soc., 369, 2521-2572, 1999 ·Zbl 1431.20033 |
[12] | Fulman, J.; Neumann, P. M.; Praeger, C. E., A generating function approach to the enumeration of matrices in classical groups over finite fields, Mem. Am. Math. Soc., 830, 2005 ·Zbl 1082.05097 |
[13] | Garzoni, D.; McKemmie, E., On the probability of generating invariably a finite simple group, J. Pure Appl. Algebra, 227, 2023 ·Zbl 1514.20056 |
[14] | Guralnick, R. M.; Kantor, W. M., Probabilistic generation of finite simple groups, J. Algebra, 234, 743-792, 2000 ·Zbl 0973.20012 |
[15] | Guralnick, R. M.; Kantor, W. M.; Saxl, J., The probability of generating a classical group, Commun. Algebra, 22, 1395-1402, 1994 ·Zbl 0820.20022 |
[16] | Guralnick, R. M.; Larsen, M.; Tiep, P. H., Representation growth in positive characteristic and conjugacy classes of maximal subgroups, Duke Math. J., 161, 107-137, 2012 ·Zbl 1244.20007 |
[17] | Kantor, W. M.; Lubotzky, A., The probability of generating a finite classical group, Geom. Dedic., 36, 67-87, 1990 ·Zbl 0718.20011 |
[18] | Kleidman, P. B.; Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, vol. 129, 1990, Cambridge University Press ·Zbl 0697.20004 |
[19] | Liebeck, M. W.; Saxl, J., Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. Lond. Math. Soc., 3, 266-314, 1991 ·Zbl 0696.20004 |
[20] | Liebeck, M. W.; Shalev, A., The probability of generating a finite simple group, Geom. Dedic., 56, 103-113, 1995 ·Zbl 0836.20068 |
[21] | Liebeck, M. W.; Shalev, A., Simple groups, permutation groups, and probability, J. Amer. Math. Soc., 12, 497-520, 1999 ·Zbl 0916.20003 |
[22] | Lucchini, A., Solubilizers in profinite groups, J. Algebra, 647, 619-632, 2024 ·Zbl 1536.20040 |
[23] | Neumann, P. M.; Praeger, C. E., Derangements and eigenvalue-free elements in finite classical groups, J. Lond. Math. Soc., 58, 564-586, 1998 ·Zbl 0936.15020 |
[24] | Steinberg, R., Generators for simple groups, Can. J. Math., 14, 277-283, 1962 ·Zbl 0103.26204 |
[25] | Stong, R., Some asymptotic results on finite vector spaces, Adv. Appl. Math., 9, 167-199, 1988 ·Zbl 0681.05004 |
[26] | Wall, G. E., On the conjugacy classes in the unitary, symplectic, and orthogonal groups, J. Aust. Math. Soc., 3, 1-63, 1963 ·Zbl 0122.28102 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.