Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Probabilistic generation of finite almost simple groups.(English)Zbl 1548.20107

A finite group \(G\) is said to be \(\frac{3}{2}\)-generated if every non-trivial element belongs to a generating pair.T. Breuer et al., J. Algebra 320, No. 2, 443–494 (2008;Zbl 1181.20013) proved that \(G\) is \(\frac{3}{2}\)-generated if and only if every proper quotient of \(G\) is cyclic.W. M. Kantor andA. Lubotzky [Geom. Dedicata 36, No. 1, 67–87 (1990;Zbl 0718.20011)] asked whether there was a probabilistic version of \(\frac{3}{2}\)-generation. This is not the case for alternating groups: if \(x \in A_{n}\) moves only a bounded number of points, the probability that \(x\) and a random element of \(A_{n}\) generate a transitive group goes to 0 as \(n \rightarrow \infty\).
The main result of the paper under review is Theorem 1.1: There exists an absolute constant \(\varepsilon > 0\) such that the following holds. Let \(S\) be a finite simple group of Lie type of large enough order and let \(x,y \in \operatorname{Aut}(S)\) with \(x \not =1\). Then the probability that \(x\) and a random element of \(Sy\) generate \(\langle S,x,y \rangle\) is at least \(\varepsilon\).
As a consequence of the main theorem, the authors prove Corollary 1.3: Let \(G\) be a profinite group and let \(g\in G\). Then, the following are equivalent: (i) the probability that \(g\) and a random element of \(G\) generate a prosolvable group is positive; (ii) there exists \(C \geq 1\) such that \(g\) centralizes all but at most \(C\) non-abelian chief factors of \(G/N\) for every open normal subgroup \(N\) of \(G\).
A key ingredient in the proof of Theorem 1.1 is a result of independent interest. The authors consider the proportion of elements in a classical group of dimension \(n\) over the field of size \(q\) which fix no subspace of dimension at most \(t\). For \(q\) and \(t\) fixed, they prove that the limit as \(n \rightarrow \infty\) exists and is strictly between \(0\) and \(1\).

MSC:

20P05 Probabilistic methods in group theory
20D06 Simple groups: alternating groups and groups of Lie type
20F69 Asymptotic properties of groups
20G40 Linear algebraic groups over finite fields

Cite

References:

[1]Breuer, T.; Guralnick, R. M.; Kantor, W. M., Probabilistic generation of finite simple groups, II, J. Algebra, 320, 443-494, 2008 ·Zbl 1181.20013
[2]Britnell, J., Cyclic, separable and semisimple matrices in the special linear groups over a finite field, J. Lond. Math. Soc., 66, 605-622, 2002 ·Zbl 1050.20034
[3]Britnell, J., Cyclic, separable and semisimple transformations in the special unitary groups over a finite field, J. Group Theory, 9, 547-569, 2006 ·Zbl 1105.20041
[4]Burness, T. C.; Guralnick, R. M.; Harper, S., The spread of a finite group, Ann. Math., 193, 619-687, 2021 ·Zbl 1480.20081
[5]T.C. Burness, R.M. Guralnick, S. Harper, Probabilistic \(\frac{ 3}{ 2} \)-generation of finite groups, preprint. ·Zbl 1480.20081
[6]Dalla Volta, F.; Lucchini, A., Generation of almost simple groups, J. Algebra, 2, 194-223, 1995 ·Zbl 0839.20021
[7]Dixon, J. D., The probability of generating the symmetric group, Math. Z., 110, 199-205, 1969 ·Zbl 0176.29901
[8]Eberhard, S.; Garzoni, D., Conjugacy classes of derangements in finite groups of Lie type, Trans. Am. Math. Soc., 2024, in press
[9]Fulman, J., Cycle indices for the finite classical groups, J. Group Theory, 2, 251-289, 1999 ·Zbl 0943.20048
[10]Fulman, J.; Guralnick, R. M., Conjugacy class properties of the extension of \(G L(n, q)\) generated by the inverse transpose involution, J. Algebra, 275, 356-396, 2004 ·Zbl 1065.20065
[11]Fulman, J.; Guralnick, R. M., Derangements in subspace actions of finite classical groups, Trans. Amer. Math. Soc., 369, 2521-2572, 1999 ·Zbl 1431.20033
[12]Fulman, J.; Neumann, P. M.; Praeger, C. E., A generating function approach to the enumeration of matrices in classical groups over finite fields, Mem. Am. Math. Soc., 830, 2005 ·Zbl 1082.05097
[13]Garzoni, D.; McKemmie, E., On the probability of generating invariably a finite simple group, J. Pure Appl. Algebra, 227, 2023 ·Zbl 1514.20056
[14]Guralnick, R. M.; Kantor, W. M., Probabilistic generation of finite simple groups, J. Algebra, 234, 743-792, 2000 ·Zbl 0973.20012
[15]Guralnick, R. M.; Kantor, W. M.; Saxl, J., The probability of generating a classical group, Commun. Algebra, 22, 1395-1402, 1994 ·Zbl 0820.20022
[16]Guralnick, R. M.; Larsen, M.; Tiep, P. H., Representation growth in positive characteristic and conjugacy classes of maximal subgroups, Duke Math. J., 161, 107-137, 2012 ·Zbl 1244.20007
[17]Kantor, W. M.; Lubotzky, A., The probability of generating a finite classical group, Geom. Dedic., 36, 67-87, 1990 ·Zbl 0718.20011
[18]Kleidman, P. B.; Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, vol. 129, 1990, Cambridge University Press ·Zbl 0697.20004
[19]Liebeck, M. W.; Saxl, J., Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. Lond. Math. Soc., 3, 266-314, 1991 ·Zbl 0696.20004
[20]Liebeck, M. W.; Shalev, A., The probability of generating a finite simple group, Geom. Dedic., 56, 103-113, 1995 ·Zbl 0836.20068
[21]Liebeck, M. W.; Shalev, A., Simple groups, permutation groups, and probability, J. Amer. Math. Soc., 12, 497-520, 1999 ·Zbl 0916.20003
[22]Lucchini, A., Solubilizers in profinite groups, J. Algebra, 647, 619-632, 2024 ·Zbl 1536.20040
[23]Neumann, P. M.; Praeger, C. E., Derangements and eigenvalue-free elements in finite classical groups, J. Lond. Math. Soc., 58, 564-586, 1998 ·Zbl 0936.15020
[24]Steinberg, R., Generators for simple groups, Can. J. Math., 14, 277-283, 1962 ·Zbl 0103.26204
[25]Stong, R., Some asymptotic results on finite vector spaces, Adv. Appl. Math., 9, 167-199, 1988 ·Zbl 0681.05004
[26]Wall, G. E., On the conjugacy classes in the unitary, symplectic, and orthogonal groups, J. Aust. Math. Soc., 3, 1-63, 1963 ·Zbl 0122.28102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp