Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Operator algebras of free wreath products.(English)Zbl 1547.46062

Summary: We give a description of operator algebras of free wreath products in terms of fundamental algebras of graphs of operator algebras as well as an explicit formula for the Haar state. This allows us to deduce stability properties for certain approximation properties such as exactness, Haagerup property, hyperlinearity and K-amenability. We study qualitative properties of the associated von Neumann algebra: factoriality, fullness, primeness and absence of Cartan subalgebra and we give a formula for Connes’ \(T\)-invariant and \(\tau\)-invariant. We also study maximal amenable von Neumann subalgebras. Finally, we give some explicit computations of K-theory groups for C*-algebras of free wreath products. As an application we show that the reduced C*-algebras of quantum reflection groups are pairwise non-isomorphic.

MSC:

46L67 Quantum groups (operator algebraic aspects)
46L10 General theory of von Neumann algebras
46L80 \(K\)-theory and operator algebras (including cyclic theory)

Cite

References:

[1]Banica, T., Symmetries of a generic coaction, Math. Ann., 314, 4, 763-780, 1999 ·Zbl 0928.46038
[2]Brannan, M.; Chirvasitu, A.; Freslon, A., Topological generation and matrix models for quantum reflection groups, Adv. Math., 363, Article 106982 pp., 2020, 31 ·Zbl 1470.20025
[3]Brannan, M.; Collins, B.; Vergnioux, R., The Connes embedding property for quantum group von Neumann algebras, Transl. Am. Math. Soc., 369, 6, 3799-3819, 2017 ·Zbl 1371.46057
[4]Brown, N.; Dykema, K.; Jung, K., Free entropy dimension in amalgamated free products, Proc. Lond. Math. Soc. (3), 97, 2, 339-367, 2008 ·Zbl 1158.46045
[5]Boutonnet, R.; Houdayer, C., Amenable absorption in amalgamated free product von Neumann algebras, Kyoto J. Math., 58, 3, 583-593, 2018 ·Zbl 1406.46045
[6]Boutonnet, R.; Houdayer, C.; Raum, S., Amalgamated free product type III factors with at most one Cartan subalgebra, Compos. Math., 150, 1, 143-174, 2014 ·Zbl 1308.46067
[7]Bichon, J., Quantum automorphism groups of finite graphs, Proc. Am. Math. Soc., 131, 3, 665-673, 2003, (electronic) ·Zbl 1013.16032
[8]Bichon, J., Free wreath product by the quantum permutation group, Algebr. Represent. Theory, 7, 4, 343-362, 2004 ·Zbl 1112.46313
[9]Brannan, M., Reduced operator algebras of trace-perserving quantum automorphism groups, Doc. Math., 18, 1349-1402, 2013 ·Zbl 1294.46063
[10]Banica, T.; Vergnioux, R., Fusion rules for quantum reflection groups, J. Noncommut. Geom., 3, 3, 327-359, 2009 ·Zbl 1203.46048
[11]Chirvasitu, A., Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras, Algebra Number Theory, 8, 5, 1179-1199, 2014 ·Zbl 1346.16026
[12]Caspers, M.; Klisse, M.; Skalski, A.; Vos, G.; Wasilewski, M., Relative Haagerup property for arbitrary von Neumann algebras, Adv. Math., 421, Article 109017 pp., 2023 ·Zbl 1519.46043
[13]Connes, A., Une classification des facteurs de type III, Ann. Sci. Éc. Norm. Supér. (4), 6, 133-252, 1973 ·Zbl 0274.46050
[14]Connes, A., Almost periodic states and factors of type \(\operatorname{III}_1\), J. Funct. Anal., 16, 415-445, 1974 ·Zbl 0302.46050
[15]Caspers, M.; Skalski, A., The Haagerup property for arbitrary von Neumann algebras, Int. Math. Res. Not., 19, 9857-9887, 2015 ·Zbl 1344.46043
[16]Cuntz, J., The K-groups for free products of \(C^\ast \)-algebras, (Operator Algebras and Applications, Part 1. Operator Algebras and Applications, Part 1, Kingston, Ont., 1980. Operator Algebras and Applications, Part 1. Operator Algebras and Applications, Part 1, Kingston, Ont., 1980, Proc. Sympos. Pure Math., vol. 38, 1982, Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 81-84 ·Zbl 0502.46050
[17]Cuntz, J., K-theoretic amenability for discrete groups, J. Reine Angew. Math., 344, 180-195, 1983 ·Zbl 0511.46066
[18]De Commer, K.; Kasprzak, P.; Skalski, A.; Sołtan, P., Quantum actions on discrete quantum spaces and a generalization of Clifford’s theory of representations, Isr. J. Math., 226, 1, 475-503, 2018 ·Zbl 1409.46045
[19]Daws, M.; Fima, P.; Skalski, A.; White, S., The Haagerup property for locally compact quantum groups, J. Reine Angew. Math., 711, 189-229, 2016 ·Zbl 1343.46068
[20]Drinfel’d, V. G., Quantum groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII, 155, 18-49, 1986, 193 ·Zbl 0617.16004
[21]Drinfel’d, V. G., Quantum groups, (Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, Calif., 1986), 1987, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 798-820 ·Zbl 0667.16003
[22]Fima, P.; Freslon, A., Graphs of quantum groups and K-amenability, Adv. Math., 260, 233-280, 2014 ·Zbl 1297.46048
[23]Fima, P.; Germain, E., The KK-theory of fundamental C*-algebras, Transl. Am. Math. Soc., 370, 10, 7051-7079, 2018 ·Zbl 1402.19004
[24]Fima, P., On locally compact quantum groups whose algebras are factors, J. Funct. Anal., 244, 1, 78-94, 2007 ·Zbl 1121.46056
[25]Fima, P., Kazhdan’s property T for discrete quantum groups, Int. J. Math., 21, 01, 47-65, 2010 ·Zbl 1195.46072
[26]Freslon, A.; Martos, R., Torsion and K-theory for some free wreath products, Int. Math. Res. Not., 6, 1639-1670, 2020 ·Zbl 1453.46061
[27]Fima, P.; Pittau, L., The free wreath product of a compact quantum group by a quantum automorphism group, J. Funct. Anal., 271, 7, 1996-2043, 2016 ·Zbl 1355.46062
[28]Freslon, A., Free wreath products with amalgamation, Commun. Algebra, 1-23, 2022
[29]Freslon, A.; Skalski, A., Wreath products of finite groups by quantum groups, J. Noncommut. Geom., 12, 1, 29-68, 2018 ·Zbl 1494.20037
[30]Gromada, D., Quantum symmetries of Cayley graphs of abelian groups, Glasg. Math. J., 65, 3, 655-686, 2023 ·Zbl 1526.20075
[31]Houdayer, C.; Isono, Y., Factoriality, Connes’ type III invariants and fullness of amalgamated free product von Neumann algebras, Proc. R. Soc. Edinb., Sect. A, 150, 3, 1495-1532, 2020 ·Zbl 1452.46046
[32]Houdayer, C.; Vaes, S., Type III factors with unique Cartan decomposition, J. Math. Pures Appl. (9), 100, 4, 564-590, 2013 ·Zbl 1291.46052
[33]Jimbo, M., A q-difference analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation, Lett. Math. Phys., 10, 1, 63-69, 1985 ·Zbl 0587.17004
[34]Kalantar, M.; Kasprzak, P.; Skalski, A.; Vergnioux, R., Noncommutative Furstenberg boundary, Anal. PDE, 15, 3, 795-842, 2022 ·Zbl 1501.46058
[35]Krajczok, J.; Sołtan, P. M., Examples of compact quantum groups with \(\operatorname{L}^\infty(\operatorname{G})\) a factor, 2022, arXiv preprint
[36]Lemeux, F., The fusion rules of some free wreath product quantum groups and applications, J. Funct. Anal., 267, 7, 2507-2550, 2014 ·Zbl 1310.46061
[37]Lemeux, F.; Tarrago, P., Free wreath product quantum groups: the monoidal category, approximation properties and free probability, J. Funct. Anal., 270, 10, 3828-3883, 2016 ·Zbl 1356.46057
[38]Ozawa, N., Examples of groups which are not weakly amenable, Kyoto J. Math., 52, 2, 333-344, 2012 ·Zbl 1242.43007
[39]Pittau, L., The free wreath product of a discrete group by a quantum automorphism group, Proc. Am. Math. Soc., 144, 5, 1985-2001, 2016 ·Zbl 1353.46053
[40]Pimsner, M.; Voiculescu, D., K-groups of reduced crossed products by free groups, J. Oper. Theory, 8, 1, 131-156, 1982 ·Zbl 0533.46045
[41]Pooya, S.; Valette, A., K-theory for the C*-algebras of the solvable Baumslag-Solitar groups, Glasg. Math. J., 60, 2, 481-486, 2018 ·Zbl 1395.46054
[42]Ricard, É.; Xu, Q., Khintchine type inequalities for reduced free products and applications, J. Reine Angew. Math., 27-59, 2006 ·Zbl 1170.46052
[43]Salmi, P., Quantum semigroup compactifications and uniform continuity on locally compact quantum groups, Ill. J. Math., 54, 2, 469-483, 2010 ·Zbl 1235.46071
[44]Serre, J.-P., Trees, 1980, Springer-Verlag: Springer-Verlag Berlin-New York, Translated by John Stillwell ·Zbl 0548.20018
[45]Tomatsu, R., Amenable discrete quantum groups, J. Math. Soc. Jpn., 58, 4, 949-964, 2006 ·Zbl 1129.46061
[46]Tarrago, P.; Wahl, J., Free wreath product quantum groups and standard invariants of subfactors, Adv. Math., 331, 1-57, 2018 ·Zbl 1401.46042
[47]Ueda, Y., Amalgamated free product over Cartan subalgebra, Pac. J. Math., 191, 2, 359-392, 1999 ·Zbl 1030.46085
[48]Ueda, Y., Factoriality, type classification and fullness for free product von Neumann algebras, Adv. Math., 228, 5, 2647-2671, 2011 ·Zbl 1252.46059
[49]Ueda, Y., On type \(\operatorname{II} \operatorname{I}_1\) factors arising as free products, Math. Res. Lett., 18, 5, 909-920, 2011 ·Zbl 1243.46053
[50]Ueda, Y., Some analysis of amalgamated free products of von Neumann algebras in the non-tracial setting, J. Lond. Math. Soc. (2), 88, 1, 25-48, 2013 ·Zbl 1285.46048
[51]Vaes, S., Strictly outer actions of groups and quantum groups, J. Reine Angew. Math., 578, 147-184, 2005 ·Zbl 1073.46047
[52]Vergnioux, R., K-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal., 212, 1, 206-221, 2004 ·Zbl 1064.46064
[53]Voigt, C., The Baum-Connes conjecture for free orthogonal quantum groups, Adv. Math., 227, 5, 1873-1913, 2011 ·Zbl 1279.19002
[54]Voigt, C., On the structure of quantum automorphism groups, J. Reine Angew. Math., 732, 255-273, 2017 ·Zbl 1376.81041
[55]Vergnioux, R.; Voigt, C., The K-theory of free quantum groups, Math. Ann., 357, 1, 355-400, 2013 ·Zbl 1284.46063
[56]Wahl, J., A note on reduced and von Neumann algebraic free wreath products, Ill. J. Math., 59, 3, 801-817, 2015 ·Zbl 1355.46056
[57]Wang, S., Free products of compact quantum groups, Commun. Math. Phys., 167, 3, 671-692, 1995 ·Zbl 0838.46057
[58]Wang, S., Quantum symmetry groups of finite spaces, Commun. Math. Phys., 195, 1, 195-211, 1998 ·Zbl 1013.17008
[59]Wang, H., On representations of semidirect products of a compact quantum group with a finite group, 2019, Preprint
[60]Woronowicz, S. L., Compact matrix pseudogroups, Commun. Math. Phys., 111, 4, 613-665, 1987 ·Zbl 0627.58034
[61]Woronowicz, S. L., Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted \(\operatorname{S} U(N)\) groups, Invent. Math., 93, 1, 35-76, 1988 ·Zbl 0664.58044
[62]Woronowicz, S. L., Compact quantum groups, (Symétries Quantiques. Symétries Quantiques, Les Houches, 1995, 1998, North-Holland: North-Holland Amsterdam), 845-884 ·Zbl 0997.46045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp