Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Prime orbit theorems for expanding Thurston maps: Lattès maps and split Ruelle operators.(English)Zbl 1547.37035

Summary: We obtain an analog of the prime number theorem for a class of branched covering maps on the 2-sphere \(S^2\) called expanding Thurston maps, which are topological models of some non-uniformly expanding rational maps without any smoothness or holomorphicity assumption. More precisely, we show that the number of primitive periodic orbits, ordered by a weight on each point induced by a non-constant (eventually) positive real-valued Hölder continuous function on \(S^2\) satisfying the \(\alpha\)-strong non-integrability condition, is asymptotically the same as the well-known logarithmic integral, with an exponential error bound. In particular, our results apply to postcritically-finite rational maps for which the Julia set is the whole Riemann sphere. Moreover, a stronger result is obtained for Lattès maps.

MSC:

37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37F15 Expanding holomorphic maps; hyperbolicity; structural stability of holomorphic dynamical systems
37B10 Symbolic dynamics
11A41 Primes
11N05 Distribution of primes
11N45 Asymptotic results on counting functions for algebraic and topological structures

Cite

References:

[1]Avila, A.; Gouëzel, S.; Yoccoz, J. C., Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104, 143-211, 2006 ·Zbl 1263.37051
[2]Baladi, V., Positive Transfer Operators and Decay of Correlations, Adv. Ser. Nonlinear Dynam., vol. 16, 2000, World Sci. Publ.: World Sci. Publ. Singapore ·Zbl 1012.37015
[3]Baladi, V.; Demers, M.; Liverani, C., Exponential decay of correlations for finite horizon Sinai billiard flows, Invent. Math., 211, 39-177, 2018 ·Zbl 1382.37037
[4]Baladi, V.; Jiang, Y.; Rugh, H. H., Dynamical determinants via dynamical conjugacies for postcritically finite polynomials, J. Stat. Phys., 108, 973-993, 2002 ·Zbl 1124.37310
[5]Bonk, M.; Meyer, D., Expanding Thurston maps, 2010, Preprint ·Zbl 1430.37001
[6]Bonk, M.; Meyer, D., Expanding Thurston Maps, Math. Surveys Monogr., vol. 225, 2017, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1430.37001
[7]Cannon, J. W., The combinatorial Riemann mapping theorem, Acta Math., 173, 155-234, 1994 ·Zbl 0832.30012
[8]Chernov, N., Markov approximations and decay of correlations for Anosov flows, Ann. Math., 147, 269-324, 1998 ·Zbl 0911.58028
[9]Das, T.; Przytycki, F.; Tiozzo, G.; Urbański, M.; Zdunik, A., Thermodynamic formalism for coarse expanding dynamical systems, 2019
[10]Dolgopyat, D., On decay of correlations of Anosov flows, Ann. Math. (2), 147, 357-390, 1998 ·Zbl 0911.58029
[11]Douady, A.; Hubbard, J. H., A proof of Thurston’s topological characterization of rational functions, Acta Math., 171, 263-297, 1993 ·Zbl 0806.30027
[12]Ellison, W. J.; Ellison, F., Prime Numbers, 1985, Hermann: Hermann Paris ·Zbl 0624.10001
[13]Haïssinsky, P.; Pilgrim, K. M., Coarse expanding conformal dynamics, Astérisque, 325, 2009, viii+139 ·Zbl 1206.37002
[14]P. Haïssinsky, J. Rivera-Letelier, Private communication.
[15]Heinonen, J., Lectures on Analysis on Metric Spaces, 2001, Springer: Springer New York ·Zbl 0985.46008
[16]Kitchens, B. P., Symbolic Dynamics: One-Sided, Two-Sided, and Countable State Markov Shifts, 1998, Springer: Springer Berlin ·Zbl 0892.58020
[17]Li, Z., Weak expansion properties and large deviation principles for expanding Thurston maps, Adv. Math., 285, 515-567, 2015 ·Zbl 1354.37037
[18]Li, Z., Periodic points and the measure of maximal entropy of an expanding Thurston map, Trans. Am. Math. Soc., 368, 8955-8999, 2016 ·Zbl 1366.37074
[19]Li, Z., Ergodic Theory of Expanding Thurston Maps, Atlantis Stud. Dyn. Syst., vol. 4, 2017, Atlantis Press ·Zbl 1380.37003
[20]Li, Z., Equilibrium states for expanding Thurston maps, Commun. Math. Phys., 357, 811-872, 2018 ·Zbl 1391.37030
[21]Z. Li, J. Rivera-Letelier, Prime orbit theorems for topological Collet-Eckmann maps, in preparation.
[22]Li, Z.; Zheng, H., Weak expansion properties and a large deviation principle for coarse expanding conformal systems, 2023, Preprint
[23]Li, Z.; Zheng, T., Prime orbit theorems for expanding Thurston maps: Dirichlet series and orbifolds, Adv. Math., 443, Article 109600 pp., 2024 ·Zbl 1546.37071
[24]Li, Z.; Zheng, T., Prime orbit theorems for expanding Thurston maps: genericity of strong non-integrability condition, 2023, Preprint
[25]Liverani, C., On contact Anosov flows, Ann. Math. (2), 159, 1275-1312, 2004 ·Zbl 1067.37031
[26]Margulis, G. A.; Mohammadi, A.; Oh, H., Closed geodesics and holonomies for Kleinian manifolds, Geom. Funct. Anal., 24, 1608-1636, 2014 ·Zbl 1366.53040
[27]Meyer, D., Expanding Thurston maps as quotients, 2012, Preprint
[28]Meyer, D., Invariant Peano curves of expanding Thurston maps, Acta Math., 210, 95-171, 2013 ·Zbl 1333.37043
[29]Milnor, J., On Lattès maps, (Dynamics on the Riemann Sphere, 2006, Eur. Math. Soc.: Eur. Math. Soc. Zürich), 9-43 ·Zbl 1235.37015
[30]Naud, F., Expanding maps on Cantor sets and analytic continuation of zeta functions, Ann. Sci. Éc. Norm. Supér. (4), 38, 116-153, 2005 ·Zbl 1110.37021
[31]Oh, H.; Pan, W., Local mixing and invariant measures for horospherical subgroups on abelian covers, Int. Math. Res. Not. IMRN, 2019, 6036-6088, 2019 ·Zbl 1503.37010
[32]Oh, H.; Winter, D., Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of \(\operatorname{SL}_2(\mathbb{Z})\), J. Am. Math. Soc., 29, 1069-1115, 2016 ·Zbl 1360.37083
[33]Oh, H.; Winter, D., Prime number theorems and holonomies for hyperbolic rational maps, Invent. Math., 208, 401-440, 2017 ·Zbl 1380.37095
[34]Parry, W.; Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188, 1-268, 1990 ·Zbl 0726.58003
[35]Pollicott, M.; Sharp, R., Exponential error terms for growth functions on negatively curved surfaces, Am. J. Math., 120, 1019-1042, 1998 ·Zbl 0999.37010
[36]Pollicott, M.; Urbański, M., Asymptotic counting in conformal dynamical systems, Mem. Am. Math. Soc., 271, 1327, 2021, v+139 pp. ·Zbl 1482.37002
[37]Przytycki, F.; Rivera-Letelier, J., Statistical properties of topological Collet-Eckmann maps, Ann. Sci. Éc. Norm. Supér. (4), 40, 135-178, 2007 ·Zbl 1115.37048
[38]Przytycki, F.; Rivera-Letelier, J., Nice inducing schemes and the thermodynamics of rational maps, Commun. Math. Phys., 301, 661-707, 2011 ·Zbl 1211.37055
[39]Przytycki, F.; Rivera-Letelier, J.; Smirnov, S., Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math., 151, 29-63, 2003 ·Zbl 1038.37035
[40]Przytycki, F.; Urbański, M., Conformal Fractals: Ergodic Theory Methods, 2010, Cambridge Univ. Press: Cambridge Univ. Press Cambridge ·Zbl 1202.37001
[41]Rivera-Letelier, J.; Shen, W., Statistical properties of one-dimensional maps under weak hyperbolicity assumptions, Ann. Sci. Éc. Norm. Supér. (4), 47, 1027-1083, 2014 ·Zbl 1351.37195
[42]Ruelle, D., An extension of the theory of Fredholm determinants, Publ. Math. Inst. Hautes Études Sci., 72, 175-193, 1990 ·Zbl 0732.47003
[43]Sullivan, D. P., Conformal dynamical systems, (Geometric Dynamics. Geometric Dynamics, Lecture Notes in Math., vol. 1007, 1983, Springer: Springer Berlin), 725-752 ·Zbl 0524.58024
[44]Sullivan, D. P., Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia problem on wandering domains, Ann. Math. (2), 122, 401-418, 1985 ·Zbl 0589.30022
[45]Titchmarsh, E. C., The Theory of Functions, 1939, Oxford Univ. Press: Oxford Univ. Press Oxford ·JFM 65.0302.01
[46]Waddington, S., Zeta functions and asymptotic formulae for preperiodic orbits of hyperbolic rational maps, Math. Nachr., 186, 259-284, 1997 ·Zbl 0908.30027
[47]Walters, P., An Introduction to Ergodic Theory, 1982, Springer: Springer New York ·Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp