Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Hypersonic similarity for steady compressible full Euler flows over two-dimensional Lipschitz wedges.(English)Zbl 1547.35517

Summary: We establish the optimal convergence rate to the hypersonic similarity law, which is also called the Mach number independence principle, for steady compressible full Euler flows over two-dimensional slender Lipschitz wedges. Mathematically, it can be formulated as the comparison of the entropy solutions in \(BV \cap L^{1}\) between the two initial-boundary value problems for the compressible full Euler equations with parameter \(\tau > 0\) and the hypersonic small-disturbance equations (the scaled compressible full Euler equations with parameter \(\tau = 0\)) with curved characteristic boundaries. We establish the \(L^1\)-convergence estimate of these two solutions with the optimal convergence rate, which justifies the Van Dyke’s similarity theory rigorously for the compressible full Euler flows. This is the first mathematical result on the comparison of two solutions of the compressible Euler equations with characteristic boundary conditions. To achieve this, we first employ the special structures of the two systems and establish the global existence and the \(L^{1}\)-stability of the entropy solutions via the wave-front tracking scheme under the smallness assumption on the total variation of both the initial data and the tangential slope function of the wedge boundary. Based on the \(L^{1}\)-stability properties of the approximate solutions to the scaled equations with parameter \(\tau > 0\), a uniform Lipschtiz continuous map with respect to the initial data and the wedge boundary is obtained, which is the first time for the characteristic boundary conditions. Next, we compare the solutions given by the Riemann solvers of the two systems by taking the boundary perturbations into account case by case. Then, for a given fixed hypersonic similarity parameter, as the Mach number tends to infinity, by employing the Lipschitz continuous properties of the map, we establish the desired \(L^{1}\)-convergence estimate with the optimal convergence rate. Finally, we show the optimality of the convergence rate by investigating a special solution.

MSC:

35Q31 Euler equations
76K05 Hypersonic flows
76J20 Supersonic flows
76L05 Shock waves and blast waves in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76N15 Gas dynamics (general theory)
35B20 Perturbations in context of PDEs
35D30 Weak solutions to PDEs
35L65 Hyperbolic conservation laws
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Cite

References:

[1]Amadori, D., Initial boundary value problem for nonlinear systems of conservation laws, Nonlinear Differ. Equ. Appl., 4, 1-42, 1997 ·Zbl 0868.35069
[2]Anderson, J., Hypersonic and High-Temperature Gas Dynamics, 2006, AIAA Education Series: AIAA Education Series Reston
[3]Bressan, A., Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, 2000, Oxford University Press: Oxford University Press Oxford ·Zbl 0997.35002
[4]Bressan, A.; Liu, T.-P.; Yang, T., \( L^1\) stability estimates for \(n \times n\) conservation laws, Arch. Ration. Mech. Anal., 149, 1-22, 1999 ·Zbl 0938.35093
[5]Chen, G.-Q.; Christoforou, C.; Zhang, Y., Dependence of entropy solutions with large oscillations to the Euler equations on the nonlinear flux functions, Indiana Univ. Math. J., 56, 2535-2568, 2007 ·Zbl 1133.35066
[6]Chen, G.-Q.; Christoforou, C.; Zhang, Y., Continuous dependence of entropy solutions to the Euler equations on the adiabatic exponent and Mach number, Arch. Ration. Mech. Anal., 189, 97-130, 2008 ·Zbl 1140.76032
[7]Chen, G.-Q.; Feldman, M., Mathematics of Shock Reflection-Diffraction and von Neumann’s Conjectures, Research Monograph, Annals of Mathematics Studies, vol. 197, 2018, Princeton University Press: Princeton University Press Princeton ·Zbl 1403.35001
[8]Chen, G.-Q.; Feldman, M.; Xiang, W., Convexity of self-similar transonic shocks and free boundaries for the Euler equations for potential flow, Arch. Ration. Mech. Anal., 238, 47-124, 2020 ·Zbl 1445.35247
[9]Chen, G.-Q.; Kuang, J.; Zhang, Y., Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49, 818-873, 2017 ·Zbl 1374.35304
[10]Chen, G.-Q.; Kuang, J.; Zhang, Y., Stability of conical shocks in the three-dimensional steady supersonic isothermal flows past Lipschitz perturbed cones, SIAM J. Math. Anal., 53, 2811-2862, 2021 ·Zbl 1467.35220
[11]Chen, G.-Q.; Kuang, J.; Xiang, W.; Zhang, Y., Convergence rate of the hypersonic similarity for two-dimensional steady potential flows with large data, 2024, preprint
[12]Chen, G.-Q.; Li, T.-H., Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge, J. Differ. Equ., 244, 1521-1550, 2008 ·Zbl 1138.35057
[13]Chen, G.-Q.; Xiang, W.; Zhang, Y., Weakly nonlinear geometric optics for hyperbolic systems of conservation laws, Commun. Partial Differ. Equ., 38, 1936-1970, 2015 ·Zbl 1288.35340
[14]Chen, G.-Q.; Zhang, Y.; Zhu, D.-W., Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Ration. Mech. Anal., 181, 261-310, 2006 ·Zbl 1121.76055
[15]Chen, G.-Q.; Zhang, Y.; Zhu, D.-W., Stability of compressible vertex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38, 1660-1693, 2007 ·Zbl 1129.35013
[16]Chen, S.-X.; Xin, Z.; Yin, H., Global shock waves for the supersonic flow past a perturbed cone, Commun. Math. Phys., 228, 47-84, 2002 ·Zbl 1006.76080
[17]Colombo, R. M.; Guerra, G., On general balance laws with boundary, J. Differ. Equ., 248, 1017-1043, 2010 ·Zbl 1196.35136
[18]Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves, 1948, Interscience Publishers Inc.: Interscience Publishers Inc. New York ·Zbl 0041.11302
[19]Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, 2016, Springer-Verlag: Springer-Verlag Berlin ·Zbl 1364.35003
[20]Donadello, C.; Marson, A., Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, Nonlinear Differ. Equ. Appl., 14, 569-592, 2007 ·Zbl 1145.35085
[21]Van Dyke, M., A study of hypersonic small disturbance theory, April 1954, NACA Rept., 194
[22]Hu, D.; Zhang, Y., Global conic shock wave for the steady supersonic flow past a curved cone, SIAM J. Math. Anal., 51, 2072-2389, 2019 ·Zbl 1428.35219
[23]Huang, F.; Kuang, J.; Wang, D.; Xiang, W., Stability of supersonic contact discontinuity for 2-D steady compressible Euler flows in a finitely long nozzles, J. Differ. Equ., 266, 4337-4376, 2019 ·Zbl 1447.35259
[24]Hu, K.; Kuang, J., Global well-posedness of shock front solutions to two-dimensional piston problem for combustion Euler flows, SIAM J. Math. Anal., 55, 2042-2110, 2023 ·Zbl 1518.35491
[25]Jin, Y.; Qu, A.; Yuan, H., On two-dimensional steady hypersonic-limit Euler flows passing ramps and radon measure solutions of compressible Euler equations, Commun. Math. Sci., 20, 1331-1361, 2022 ·Zbl 1492.35204
[26]Jin, Y.; Qu, A.; Yuan, H., Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies, Comm. Pure Appl. Anal., 20, 2665-2685, 2021 ·Zbl 1501.35297
[27]Kong, D.-X.; Yang, T., A note on “well-posedness theory for hyperbolic conservation laws”, Appl. Math. Lett., 16, 143-146, 2003 ·Zbl 1073.35159
[28]Kuang, J.; Xiang, W.; Zhang, Y., Hypersonic similarity for the two dimensional steady potential flow with large data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 37, 1379-1423, 2020 ·Zbl 1456.35138
[29]Kuang, J.; Xiang, W.; Zhang, Y., Convergence rate of hypersonic similarity for steady potential flows over two-dimensional Lipschitz wedge, Calc. Var. Partial Differ. Equ., 62, Article 106 pp., 2023 ·Zbl 1509.35199
[30]Kuang, J.; Zhao, Q., Global existence and stability of shock front solution to the 1-D piston problem for exothermically reacting Euler equations, J. Math. Fluid Mech., 22, 2020, 42pp. ·Zbl 1434.35080
[31]Landau, L.; Lifschitz, E., Fluid Mechanics, 2004, Elsevier Ltd.: Elsevier Ltd. Singapore
[32]Li, J.; Witt, I.; Yin, H., On the global existence and stability of a multi-dimensional supersonic conic shock waves, Commun. Math. Phys., 329, 609-640, 2014 ·Zbl 1298.35151
[33]Lien, W.-C.; Liu, T.-P., Nonlinear stability of a self-similar 3-D gas flow, Commun. Math. Phys., 304, 524-549, 1999
[34]Qu, A.; Wang, L.; Yuan, H., Radon measure solutions for steady hypersonic-limit Euler flows passing two-dimensional finite non-symmetric obstacles and interactions of free concentration layers, Commun. Math. Sci., 19, 875-901, 2021 ·Zbl 1490.35282
[35]Qu, A.; Yuan, H., Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton’s sine-squared law, J. Differ. Equ., 269, 495-522, 2020 ·Zbl 1457.76131
[36]Qu, A.; Yuan, H.; Zhao, Q., Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge, Z. Angew. Math. Mech., 100, 2020, 14pp. ·Zbl 07800081
[37]Tsien, H.-S., Similarity laws of hypersonic flows, J. Math. Phys., 25, 247-251, 1946 ·Zbl 0063.07867
[38]Smoller, J., Shock Waves and Reaction-Diffusion Equations, 1994, Springer-Verlag, Inc.: Springer-Verlag, Inc. New York ·Zbl 0807.35002
[39]Wang, Z.; Zhang, Y., Steady supersonic flow past a curved cone, J. Differ. Equ., 247, 1817-1850, 2009 ·Zbl 1180.35354
[40]Xiang, W.; Zhang, Y.; Zhao, Q., Two-dimensional steady supersonic exothermically reacting Euler flows with strong contact discontinuity over a Lipschitz wall, Interfaces Free Bound., 20, 437-481, 2018 ·Zbl 1408.35140
[41]Zhang, Y., Global existence of steady supersonic potential flow past a curved wedge with piecewise smooth boundary, SIAM J. Math. Anal., 31, 166-183, 1999 ·Zbl 0940.35138
[42]Zhang, Y., Steady supersonic flow past an almost straight wedge with large vertex angle, J. Differ. Equ., 192, 1-46, 2003 ·Zbl 1035.35079
[43]Zhang, Y., On the irrotational approximation to steady supersonic flow, Z. Angew. Math. Phys., 58, 209-223, 2007 ·Zbl 1113.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp