[1] | Amadori, D., Initial boundary value problem for nonlinear systems of conservation laws, Nonlinear Differ. Equ. Appl., 4, 1-42, 1997 ·Zbl 0868.35069 |
[2] | Anderson, J., Hypersonic and High-Temperature Gas Dynamics, 2006, AIAA Education Series: AIAA Education Series Reston |
[3] | Bressan, A., Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, 2000, Oxford University Press: Oxford University Press Oxford ·Zbl 0997.35002 |
[4] | Bressan, A.; Liu, T.-P.; Yang, T., \( L^1\) stability estimates for \(n \times n\) conservation laws, Arch. Ration. Mech. Anal., 149, 1-22, 1999 ·Zbl 0938.35093 |
[5] | Chen, G.-Q.; Christoforou, C.; Zhang, Y., Dependence of entropy solutions with large oscillations to the Euler equations on the nonlinear flux functions, Indiana Univ. Math. J., 56, 2535-2568, 2007 ·Zbl 1133.35066 |
[6] | Chen, G.-Q.; Christoforou, C.; Zhang, Y., Continuous dependence of entropy solutions to the Euler equations on the adiabatic exponent and Mach number, Arch. Ration. Mech. Anal., 189, 97-130, 2008 ·Zbl 1140.76032 |
[7] | Chen, G.-Q.; Feldman, M., Mathematics of Shock Reflection-Diffraction and von Neumann’s Conjectures, Research Monograph, Annals of Mathematics Studies, vol. 197, 2018, Princeton University Press: Princeton University Press Princeton ·Zbl 1403.35001 |
[8] | Chen, G.-Q.; Feldman, M.; Xiang, W., Convexity of self-similar transonic shocks and free boundaries for the Euler equations for potential flow, Arch. Ration. Mech. Anal., 238, 47-124, 2020 ·Zbl 1445.35247 |
[9] | Chen, G.-Q.; Kuang, J.; Zhang, Y., Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49, 818-873, 2017 ·Zbl 1374.35304 |
[10] | Chen, G.-Q.; Kuang, J.; Zhang, Y., Stability of conical shocks in the three-dimensional steady supersonic isothermal flows past Lipschitz perturbed cones, SIAM J. Math. Anal., 53, 2811-2862, 2021 ·Zbl 1467.35220 |
[11] | Chen, G.-Q.; Kuang, J.; Xiang, W.; Zhang, Y., Convergence rate of the hypersonic similarity for two-dimensional steady potential flows with large data, 2024, preprint |
[12] | Chen, G.-Q.; Li, T.-H., Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge, J. Differ. Equ., 244, 1521-1550, 2008 ·Zbl 1138.35057 |
[13] | Chen, G.-Q.; Xiang, W.; Zhang, Y., Weakly nonlinear geometric optics for hyperbolic systems of conservation laws, Commun. Partial Differ. Equ., 38, 1936-1970, 2015 ·Zbl 1288.35340 |
[14] | Chen, G.-Q.; Zhang, Y.; Zhu, D.-W., Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Ration. Mech. Anal., 181, 261-310, 2006 ·Zbl 1121.76055 |
[15] | Chen, G.-Q.; Zhang, Y.; Zhu, D.-W., Stability of compressible vertex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38, 1660-1693, 2007 ·Zbl 1129.35013 |
[16] | Chen, S.-X.; Xin, Z.; Yin, H., Global shock waves for the supersonic flow past a perturbed cone, Commun. Math. Phys., 228, 47-84, 2002 ·Zbl 1006.76080 |
[17] | Colombo, R. M.; Guerra, G., On general balance laws with boundary, J. Differ. Equ., 248, 1017-1043, 2010 ·Zbl 1196.35136 |
[18] | Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves, 1948, Interscience Publishers Inc.: Interscience Publishers Inc. New York ·Zbl 0041.11302 |
[19] | Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, 2016, Springer-Verlag: Springer-Verlag Berlin ·Zbl 1364.35003 |
[20] | Donadello, C.; Marson, A., Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, Nonlinear Differ. Equ. Appl., 14, 569-592, 2007 ·Zbl 1145.35085 |
[21] | Van Dyke, M., A study of hypersonic small disturbance theory, April 1954, NACA Rept., 194 |
[22] | Hu, D.; Zhang, Y., Global conic shock wave for the steady supersonic flow past a curved cone, SIAM J. Math. Anal., 51, 2072-2389, 2019 ·Zbl 1428.35219 |
[23] | Huang, F.; Kuang, J.; Wang, D.; Xiang, W., Stability of supersonic contact discontinuity for 2-D steady compressible Euler flows in a finitely long nozzles, J. Differ. Equ., 266, 4337-4376, 2019 ·Zbl 1447.35259 |
[24] | Hu, K.; Kuang, J., Global well-posedness of shock front solutions to two-dimensional piston problem for combustion Euler flows, SIAM J. Math. Anal., 55, 2042-2110, 2023 ·Zbl 1518.35491 |
[25] | Jin, Y.; Qu, A.; Yuan, H., On two-dimensional steady hypersonic-limit Euler flows passing ramps and radon measure solutions of compressible Euler equations, Commun. Math. Sci., 20, 1331-1361, 2022 ·Zbl 1492.35204 |
[26] | Jin, Y.; Qu, A.; Yuan, H., Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies, Comm. Pure Appl. Anal., 20, 2665-2685, 2021 ·Zbl 1501.35297 |
[27] | Kong, D.-X.; Yang, T., A note on “well-posedness theory for hyperbolic conservation laws”, Appl. Math. Lett., 16, 143-146, 2003 ·Zbl 1073.35159 |
[28] | Kuang, J.; Xiang, W.; Zhang, Y., Hypersonic similarity for the two dimensional steady potential flow with large data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 37, 1379-1423, 2020 ·Zbl 1456.35138 |
[29] | Kuang, J.; Xiang, W.; Zhang, Y., Convergence rate of hypersonic similarity for steady potential flows over two-dimensional Lipschitz wedge, Calc. Var. Partial Differ. Equ., 62, Article 106 pp., 2023 ·Zbl 1509.35199 |
[30] | Kuang, J.; Zhao, Q., Global existence and stability of shock front solution to the 1-D piston problem for exothermically reacting Euler equations, J. Math. Fluid Mech., 22, 2020, 42pp. ·Zbl 1434.35080 |
[31] | Landau, L.; Lifschitz, E., Fluid Mechanics, 2004, Elsevier Ltd.: Elsevier Ltd. Singapore |
[32] | Li, J.; Witt, I.; Yin, H., On the global existence and stability of a multi-dimensional supersonic conic shock waves, Commun. Math. Phys., 329, 609-640, 2014 ·Zbl 1298.35151 |
[33] | Lien, W.-C.; Liu, T.-P., Nonlinear stability of a self-similar 3-D gas flow, Commun. Math. Phys., 304, 524-549, 1999 |
[34] | Qu, A.; Wang, L.; Yuan, H., Radon measure solutions for steady hypersonic-limit Euler flows passing two-dimensional finite non-symmetric obstacles and interactions of free concentration layers, Commun. Math. Sci., 19, 875-901, 2021 ·Zbl 1490.35282 |
[35] | Qu, A.; Yuan, H., Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton’s sine-squared law, J. Differ. Equ., 269, 495-522, 2020 ·Zbl 1457.76131 |
[36] | Qu, A.; Yuan, H.; Zhao, Q., Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge, Z. Angew. Math. Mech., 100, 2020, 14pp. ·Zbl 07800081 |
[37] | Tsien, H.-S., Similarity laws of hypersonic flows, J. Math. Phys., 25, 247-251, 1946 ·Zbl 0063.07867 |
[38] | Smoller, J., Shock Waves and Reaction-Diffusion Equations, 1994, Springer-Verlag, Inc.: Springer-Verlag, Inc. New York ·Zbl 0807.35002 |
[39] | Wang, Z.; Zhang, Y., Steady supersonic flow past a curved cone, J. Differ. Equ., 247, 1817-1850, 2009 ·Zbl 1180.35354 |
[40] | Xiang, W.; Zhang, Y.; Zhao, Q., Two-dimensional steady supersonic exothermically reacting Euler flows with strong contact discontinuity over a Lipschitz wall, Interfaces Free Bound., 20, 437-481, 2018 ·Zbl 1408.35140 |
[41] | Zhang, Y., Global existence of steady supersonic potential flow past a curved wedge with piecewise smooth boundary, SIAM J. Math. Anal., 31, 166-183, 1999 ·Zbl 0940.35138 |
[42] | Zhang, Y., Steady supersonic flow past an almost straight wedge with large vertex angle, J. Differ. Equ., 192, 1-46, 2003 ·Zbl 1035.35079 |
[43] | Zhang, Y., On the irrotational approximation to steady supersonic flow, Z. Angew. Math. Phys., 58, 209-223, 2007 ·Zbl 1113.76081 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.