[1] | Brundan, J., Kazhdan-Lusztig polynomials and character formulae for Lie superalgebra \(\mathfrak{q}(n)\), Adv. Math., 182, 28-77, 2004 ·Zbl 1048.17003 |
[2] | Brundan, J.; Davidson, N., Type C blocks of super category \(\mathcal{O} \), Math. Z., 293, 3-4, 867-901, 2019 ·Zbl 1446.17029 |
[3] | Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra. IV: the general linear supergroup, J. Eur. Math. Soc., 14, 2, 2012 ·Zbl 1243.17004 |
[4] | Cheng, S. J., Supercharacters of queer Lie superalgebras, J. Math. Phys., 58, 6, Article 061701 pp., 2017 ·Zbl 1417.17012 |
[5] | Cheng, J.-S.; Kwon, J.-H., Finite-dimensional half-integer weight modules over queer Lie superalgebras, Commun. Math. Phys., 346, 945-965, 2016 ·Zbl 1406.17017 |
[6] | Duflo, M.; Serganova, V., On associated variety for Lie superalgebras |
[7] | Entova-Aizenbud, I.; Serganova, V., Duflo-Serganova functor and superdimension formula for the periplectic Lie superalgebra, Algebra Number Theory, 16, 3, 697-729, 2022 ·Zbl 1493.17008 |
[8] | Frisk, A., Typical blocks of the category \(\mathcal{O}\) for the queer Lie superalgebra, J. Algebra Appl., 6, 5, 2006 |
[9] | Frisk, A.; Mazorchuk, V., Regular strongly typical blocks of \(\mathcal{O}^{\mathfrak{q}} \), Comm. Math. Phys., 291, 2009 ·Zbl 1269.17005 |
[10] | Gorelik, M., Shapovalov determinants for Q-type Lie superalgebras, Int. Math. Res. Pap., Article 96895 pp., 2006 ·Zbl 1178.17007 |
[11] | Gorelik, M., Depths and cores in the light of DS-functors |
[12] | Gorelik, M., Bipartite extension graphs and the Dulfo-Serganova functor |
[13] | Gorelik, M., On modified extension graphs of a fixed atypicality, J. Algebra, 2023 |
[14] | Gorelik, M.; Heidersdorf, T., Semisimplicity of the DS functor for the orthosymplectic Lie superalgebra, Adv. Math., 394, Article 108012 pp., 2022 ·Zbl 1497.17009 |
[15] | Gorelik, M.; Hoyt, C.; Serganova, V.; Sherman, A., The Duflo-Serganova functor, vingt ans après, J. Indian Inst. Sci., 102, 3, 961-1000, 2022 ·Zbl 1542.81015 |
[16] | Gorelik, M.; Serganova, V.; Sherman, A., On the Grothendieck ring of a quasireductive Lie superalgebra, 2022, preprint |
[17] | Grantcharov, N.; Serganova, V., Extension quiver for Lie superalgebra \(\mathfrak{q}(3)\), SIGMA, 16, Article 141 pp., 2020 ·Zbl 1498.17035 |
[18] | Gruson, C.; Serganova, V., Cohomology of generalized supergrassmanians and character formulae for basic classical Lie superalgebras, Proc. Lond. Math. Soc. (3), 101, 852-892, 2010 ·Zbl 1216.17005 |
[19] | Heidersdorf, T.; Weissauer, R., Cohomological tensor functors on representations of the general linear supergroup, Mem. Am. Math. Soc., 16, 2, 2024 ·Zbl 1475.17013 |
[20] | Penkov, I., Characters of typical irreducible finite-dimensional \(\mathfrak{q}(n)\)-modules, Funct. Anal. Appl., 20, 30-37, 1986 ·Zbl 0595.17003 |
[21] | Penkov, I.; Serganova, V., Characters of finite-dimensional irreducible \(\mathfrak{q}(n)\)-modules, Lett. Math. Phys., 40, 147-158, 1997 ·Zbl 0892.17006 |
[22] | Penkov, I.; Serganova, V., Characters of irreducible G-modules and cohomology of \(G / P\) for the supergroup \(G = Q(N)\), J. Math. Sci., 84, 1382-1412, 1997 ·Zbl 0920.17003 |
[23] | Ringel, C. M., The indecomposable representations of the dihedral 2-groups, Math. Ann., 214, 19-34, 1975 ·Zbl 0299.20005 |
[24] | Serganova, V., On the superdimension of an irreducible representation of a basic classical Lie superalgebra, (Supersymmetry in Mathematics and Physics. Supersymmetry in Mathematics and Physics, Lecture Notes in Math., vol. 2027, 2011, Springer: Springer Heidelberg), 253-273 ·Zbl 1287.17020 |
[25] | Serganova, V., Finite-dimensional representation of algebraic supergroups, (Proceedings of the International Congress of Mathematicians. Proceedings of the International Congress of Mathematicians, Seoul 2014, vol. 1, 2014, Kyung Moon Sa: Kyung Moon Sa Seoul), 603-632 ·Zbl 1373.17023 |
[26] | Sergeev, A., The centre of the enveloping algebra for Lie superalgebra \(Q(n, \mathbb{C})\), Lett. Math. Phys., 7, 3, 177-179, 1983 ·Zbl 0539.17003 |
[27] | Sherman, A., On symmetries of the Duflo-Serganova functor, Isr. J. Math., 2024, in press |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.