Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the Duflo-Serganova functor for the queer Lie superalgebra.(English)Zbl 1547.17017

The authors study the Duflo-Serganova functor \(\text{DS}_x:\mathrm{Rep}(\mathfrak{g})\rightarrow\mathrm{Rep}(\mathfrak{g}_x)\), where \(\mathfrak{g}_x:= \text{Ker }\text{ad}(x)/\text{Im } \text{ad}(x)\) for the queer Lie superalgebra \(\mathfrak{g} := \mathfrak{q}_n\) and for all odd \(x\) with \([x, x]\) semisimple. For the case when the rank of \(x\) is \(1\), the authors give a formula for multiplicities in terms of the arc diagram attached to a dominant weight \(\lambda\). They also prove that \(\text{DS}_x(L)\) is semisimple if \(L\) is a simple finite-dimensional module and \(x\) is of rank \(1\) satisfying \(x^2 = 0\).

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
17B55 Homological methods in Lie (super)algebras

Cite

References:

[1]Brundan, J., Kazhdan-Lusztig polynomials and character formulae for Lie superalgebra \(\mathfrak{q}(n)\), Adv. Math., 182, 28-77, 2004 ·Zbl 1048.17003
[2]Brundan, J.; Davidson, N., Type C blocks of super category \(\mathcal{O} \), Math. Z., 293, 3-4, 867-901, 2019 ·Zbl 1446.17029
[3]Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra. IV: the general linear supergroup, J. Eur. Math. Soc., 14, 2, 2012 ·Zbl 1243.17004
[4]Cheng, S. J., Supercharacters of queer Lie superalgebras, J. Math. Phys., 58, 6, Article 061701 pp., 2017 ·Zbl 1417.17012
[5]Cheng, J.-S.; Kwon, J.-H., Finite-dimensional half-integer weight modules over queer Lie superalgebras, Commun. Math. Phys., 346, 945-965, 2016 ·Zbl 1406.17017
[6]Duflo, M.; Serganova, V., On associated variety for Lie superalgebras
[7]Entova-Aizenbud, I.; Serganova, V., Duflo-Serganova functor and superdimension formula for the periplectic Lie superalgebra, Algebra Number Theory, 16, 3, 697-729, 2022 ·Zbl 1493.17008
[8]Frisk, A., Typical blocks of the category \(\mathcal{O}\) for the queer Lie superalgebra, J. Algebra Appl., 6, 5, 2006
[9]Frisk, A.; Mazorchuk, V., Regular strongly typical blocks of \(\mathcal{O}^{\mathfrak{q}} \), Comm. Math. Phys., 291, 2009 ·Zbl 1269.17005
[10]Gorelik, M., Shapovalov determinants for Q-type Lie superalgebras, Int. Math. Res. Pap., Article 96895 pp., 2006 ·Zbl 1178.17007
[11]Gorelik, M., Depths and cores in the light of DS-functors
[12]Gorelik, M., Bipartite extension graphs and the Dulfo-Serganova functor
[13]Gorelik, M., On modified extension graphs of a fixed atypicality, J. Algebra, 2023
[14]Gorelik, M.; Heidersdorf, T., Semisimplicity of the DS functor for the orthosymplectic Lie superalgebra, Adv. Math., 394, Article 108012 pp., 2022 ·Zbl 1497.17009
[15]Gorelik, M.; Hoyt, C.; Serganova, V.; Sherman, A., The Duflo-Serganova functor, vingt ans après, J. Indian Inst. Sci., 102, 3, 961-1000, 2022 ·Zbl 1542.81015
[16]Gorelik, M.; Serganova, V.; Sherman, A., On the Grothendieck ring of a quasireductive Lie superalgebra, 2022, preprint
[17]Grantcharov, N.; Serganova, V., Extension quiver for Lie superalgebra \(\mathfrak{q}(3)\), SIGMA, 16, Article 141 pp., 2020 ·Zbl 1498.17035
[18]Gruson, C.; Serganova, V., Cohomology of generalized supergrassmanians and character formulae for basic classical Lie superalgebras, Proc. Lond. Math. Soc. (3), 101, 852-892, 2010 ·Zbl 1216.17005
[19]Heidersdorf, T.; Weissauer, R., Cohomological tensor functors on representations of the general linear supergroup, Mem. Am. Math. Soc., 16, 2, 2024 ·Zbl 1475.17013
[20]Penkov, I., Characters of typical irreducible finite-dimensional \(\mathfrak{q}(n)\)-modules, Funct. Anal. Appl., 20, 30-37, 1986 ·Zbl 0595.17003
[21]Penkov, I.; Serganova, V., Characters of finite-dimensional irreducible \(\mathfrak{q}(n)\)-modules, Lett. Math. Phys., 40, 147-158, 1997 ·Zbl 0892.17006
[22]Penkov, I.; Serganova, V., Characters of irreducible G-modules and cohomology of \(G / P\) for the supergroup \(G = Q(N)\), J. Math. Sci., 84, 1382-1412, 1997 ·Zbl 0920.17003
[23]Ringel, C. M., The indecomposable representations of the dihedral 2-groups, Math. Ann., 214, 19-34, 1975 ·Zbl 0299.20005
[24]Serganova, V., On the superdimension of an irreducible representation of a basic classical Lie superalgebra, (Supersymmetry in Mathematics and Physics. Supersymmetry in Mathematics and Physics, Lecture Notes in Math., vol. 2027, 2011, Springer: Springer Heidelberg), 253-273 ·Zbl 1287.17020
[25]Serganova, V., Finite-dimensional representation of algebraic supergroups, (Proceedings of the International Congress of Mathematicians. Proceedings of the International Congress of Mathematicians, Seoul 2014, vol. 1, 2014, Kyung Moon Sa: Kyung Moon Sa Seoul), 603-632 ·Zbl 1373.17023
[26]Sergeev, A., The centre of the enveloping algebra for Lie superalgebra \(Q(n, \mathbb{C})\), Lett. Math. Phys., 7, 3, 177-179, 1983 ·Zbl 0539.17003
[27]Sherman, A., On symmetries of the Duflo-Serganova functor, Isr. J. Math., 2024, in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp