Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Twisting Manin’s universal quantum groups and comodule algebras.(English)Zbl 1547.16026

In this paper the authors study a categorical notion that describes when two noncommutative projective spaces have the same quantum symmetries: Two connected graded algebras finitely generated in degree one \(A\) and \(B\) are calledweakly quantum-symmetrically equivalent if there is a monoidal equivalence between the comodule categories of their associated universal quantum groups \(\textrm{comod}(\textrm{aut}(A)) \cong_\otimes \textrm{comod}(\textrm{aut}(B))\) in the sense ofY. I. Manin [Quantum groups and noncommutative geometry. 2nd edition. Cham: Springer; Montreal: Centre de Recherches Mathématiques (CRM) (2018;Zbl 1430.16001)], and they are calledquantum-symmetrically equivalent if there is such an equivalence sending \(A\) to \(B\) as comodule algebras. Some approaches to building deformations of an algebra preserving its quantum-symmetric equivalence class are presented, first through 2-cocycle twists of Hopf algebras and their comodules, and also throughJ. J. Zhang’s twists [Proc. Lond. Math. Soc. (3) 72, No. 2, 281–311 (1996;Zbl 0852.16005)]. Certain ring-theoretical and homological invariants of connected graded algebras are shown to be invariant under quantum-symmetric equivalence.
The authors also show that Koszul Artin-Schelter regular algebras of a fixed global dimension form a single quantum-symmetric equivalence class. Further results include a characterization of 2-cocycle twists of Koszul duals, of superpotentials, of superpotential algebras, of Nakayama automorphisms of twisted Frobenius algebras, and of Artin-Schelter regular algebras, and the fact that finite generation of Hochschild cohomology rings is preserved under certain 2-cocycle twists.

MSC:

16T05 Hopf algebras and their applications
16W50 Graded rings and modules (associative rings and algebras)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Cite

References:

[1]Agore, A. L.; Gordienko, A. S.; Vercruysse, J., V-universal Hopf algebras (co)acting on Ω-algebras, Commun. Contemp. Math., 25, 1, Article 2150095 pp., 2023, 40. MR 4523148 ·Zbl 1517.16027
[2]Artin, M.; Schelter, W. F., Graded algebras of global dimension 3, Adv. Math., 66, 2, 171-216, 1987, MR 917738 ·Zbl 0633.16001
[3]Artin, M.; Tate, J.; Van den Bergh, M., Some algebras associated to automorphisms of elliptic curves, (The Grothendieck Festschrift, vol. I. The Grothendieck Festschrift, vol. I, Progr. Math., vol. 86, 1990, Birkhäuser Boston: Birkhäuser Boston Boston, MA), 33-85, MR 1086882 ·Zbl 0744.14024
[4]Artin, M.; Tate, J.; Van den Bergh, M., Modules over regular algebras of dimension 3, Invent. Math., 106, 2, 335-388, 1991, MR 1128218 ·Zbl 0763.14001
[5]Berger, R., Koszulity for nonquadratic algebras, J. Algebra, 239, 2, 705-734, 2001, MR 1832913 ·Zbl 1035.16023
[6]Berger, R.; Marconnet, N., Koszul and Gorenstein properties for homogeneous algebras, Algebr. Represent. Theory, 9, 1, 67-97, 2006, MR 2233117 ·Zbl 1125.16017
[7]Bichon, J., Hopf-Galois objects and cogroupoids, Rev. Unión Mat. Argent., 55, 2, 11-69, 2014, MR 3285340 ·Zbl 1322.16021
[8]Bichon, J.; Dubois-Violette, M., The quantum group of a preregular multilinear form, Lett. Math. Phys., 103, 4, 455-468, 2013, MR 3029329 ·Zbl 1284.16036
[9]Bichon, J.; Neshveyev, S.; Yamashita, M., Graded twisting of categories and quantum groups by group actions, Ann. Inst. Fourier (Grenoble), 66, 6, 2299-2338, 2016, MR 3580173 ·Zbl 1372.16036
[10]Bichon, J.; Neshveyev, S.; Yamashita, M., Graded twisting of comodule algebras and module categories, J. Noncommut. Geom., 12, 1, 331-368, 2018, MR 3782061 ·Zbl 1418.16018
[11]Bocklandt, R., Graded Calabi-Yau algebras of dimension 3, J. Pure Appl. Algebra, 212, 1, 14-32, 2008, MR 2355031 ·Zbl 1132.16017
[12]Bocklandt, R.; Schedler, T.; Wemyss, M., Superpotentials and higher order derivations, J. Pure Appl. Algebra, 214, 9, 1501-1522, 2010, MR 2593679 ·Zbl 1219.16016
[13]Brown, K. A.; Macleod, M. J., The Cohen Macaulay property for noncommutative rings, Algebr. Represent. Theory, 20, 6, 1433-1465, 2017, MR 3735914 ·Zbl 1388.16009
[14]Brown, K. A.; Zhang, J. J., Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras, J. Algebra, 320, 5, 1814-1850, 2008, MR 2437632 ·Zbl 1159.16009
[15]Caenepeel, S.; Guédénon, T., On the cohomology of relative Hopf modules, Commun. Algebra, 33, 11, 4011-4034, 2005 ·Zbl 1101.16028
[16]Caenepeel, S.; Militaru, G.; Zhu, S., Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Mathematics, vol. 1787, 2002, Springer-Verlag: Springer-Verlag Berlin, MR 1926102 ·Zbl 1008.16036
[17]Chan, K.; Kirkman, E.; Walton, C.; Zhang, J. J., McKay correspondence for semisimple Hopf actions on regular graded algebras, I, J. Algebra, 508, 512-538, 2018, MR 3810305 ·Zbl 1420.16018
[18]Chan, K.; Kirkman, E.; Walton, C.; Zhang, J. J., McKay correspondence for semisimple Hopf actions on regular graded algebras. II, J. Noncommut. Geom., 13, 1, 87-114, 2019, MR 3941474 ·Zbl 1444.16044
[19]Chan, K.; Walton, C.; Zhang, J. J., Hopf actions and Nakayama automorphisms, J. Algebra, 409, 26-53, 2014, MR 3198834 ·Zbl 1315.16027
[20]Chirvasitu, A.; Smith, S. P., Exotic elliptic algebras of dimension 4, Adv. Math., 309, 558-623, 2017, With an appendix by Derek Tomlin. MR3607286 ·Zbl 1427.16018
[21]Chirvasitu, A.; Smith, S. P., Exotic elliptic algebras, Trans. Am. Math. Soc., 371, 1, 279-333, 2019, MR 3885145 ·Zbl 1445.16010
[22]Chirvasitu, A.; Walton, C.; Wang, X., On quantum groups associated to a pair of preregular forms, J. Noncommut. Geom., 13, 1, 115-159, 2019, MR 3941475 ·Zbl 1444.16030
[23]Cuadra, J.; Etingof, P.; Walton, C., Finite dimensional Hopf actions on Weyl algebras, Adv. Math., 302, 25-39, 2016, MR 3545923 ·Zbl 1356.16025
[24]Davies, A., Cocycle twists of algebras, Commun. Algebra, 45, 3, 1347-1363, 2017, MR 3573384 ·Zbl 1386.16013
[25]Doi, Y., Braided bialgebras and quadratic bialgebras, Commun. Algebra, 21, 5, 1731-1749, 1993, MR 1213985 ·Zbl 0779.16015
[26]Doi, Y.; Takeuchi, M., Multiplication alteration by two-cocycles—the quantum version, Commun. Algebra, 22, 14, 5715-5732, 1994, MR 1298746 ·Zbl 0821.16038
[27]Dong, Z.-C.; Wu, Q.-S., Non-commutative Castelnuovo-Mumford regularity and AS-regular algebras, J. Algebra, 322, 1, 122-136, 2009, MR 2526379 ·Zbl 1179.16004
[28]Dubois-Violette, M., Graded algebras and multilinear forms, C. R. Math. Acad. Sci. Paris, 341, 12, 719-724, 2005, MR 2188865 ·Zbl 1105.16020
[29]Dubois-Violette, M., Multilinear forms and graded algebras, J. Algebra, 317, 1, 198-225, 2007, MR 2360146 ·Zbl 1141.17010
[30]Dubois-Violette, M.; Launer, G., The quantum group of a nondegenerate bilinear form, Phys. Lett. B, 245, 2, 175-177, 1990, MR 1068703 ·Zbl 1119.16307
[31]Etingof, P.; Gelaki, S., On cotriangular Hopf algebras, Am. J. Math., 123, 4, 699-713, 2001, MR 1844575 ·Zbl 0990.16030
[32]Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor Categories, Mathematical Surveys and Monographs, vol. 205, 2015, American Mathematical Society: American Mathematical Society Providence, RI, MR 3242743 ·Zbl 1365.18001
[33]Etingof, P.; Walton, C., Finite dimensional Hopf actions on algebraic quantizations, Algebra Number Theory, 10, 10, 2287-2310, 2016, MR 3582020 ·Zbl 1355.16030
[34]Etingof, P.; Walton, C., Finite dimensional Hopf actions on deformation quantizations, Proc. Am. Math. Soc., 145, 5, 1917-1925, 2017, MR 3611308 ·Zbl 1388.16033
[35]Goodearl, K. R.; Yakimov, M., Unipotent and Nakayama automorphisms of quantum nilpotent algebras, (Commutative Algebra and Noncommutative Algebraic Geometry, vol. 2, 2015), 181-212 ·Zbl 1359.16036
[36]He, J.-W.; Lu, D.-M., Higher Koszul algebras and A-infinity algebras, J. Algebra, 293, 2, 335-362, 2005, MR 2172343 ·Zbl 1143.16027
[37]Huang, H.; Nguyen, V. C.; Ure, C.; Vashaw, K. B.; Veerapen, P.; Wang, X., Twisting of graded quantum groups and solutions to the quantum Yang-Baxter equation, Transform. Groups, 2022
[38]Huang, H.; Nguyen, V. C.; Ure, C.; Vashaw, K. B.; Veerapen, P.; Wang, X., A cogroupoid associated to preregular forms, J. Noncommut. Geom., 2024, in press ·Zbl 07926814
[39]Huang, H.; Walton, C.; Wicks, E.; Won, R., Universal quantum semigroupoids, J. Pure Appl. Algebra, 227, 2, Article 107193 pp., 2023, 34. MR 4460365 ·Zbl 1511.16024
[40]Jørgensen, P., Non-commutative Castelnuovo-Mumford regularity, Math. Proc. Camb. Philos. Soc., 125, 2, 203-221, 1999 ·Zbl 0920.14002
[41]Jørgensen, P., Linear free resolutions over non-commutative algebras, Compos. Math., 140, 4, 1053-1058, 2004, MR 2059230 ·Zbl 1073.16007
[42]Kirkman, E.; Kuzmanovich, J.; Zhang, J. J., Gorenstein subrings of invariants under Hopf algebra actions, J. Algebra, 322, 10, 3640-3669, 2009 ·Zbl 1225.16015
[43]Kirkman, E.; Won, R.; Zhang, J. J.J., Homological regularities and concavities, 2021
[44]Kock, J., Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathematical Society Student Texts, vol. 59, 2004, Cambridge University Press: Cambridge University Press Cambridge, MR 2037238 ·Zbl 1046.57001
[45]Levasseur, T., Some properties of noncommutative regular graded rings, Glasg. Math. J., 34, 3, 277-300, 1992, MR 1181768 ·Zbl 0824.16032
[46]Liu, L.-Y.; Wang, S.-Q.; Wu, Q.-S., Twisted Calabi-Yau property of Ore extensions, J. Noncommut. Geom., 8, 2, 587-609, 2014 ·Zbl 1317.16025
[47]Lu, D. M.; Palmieri, J. H.; Wu, Q. S.; Zhang, J. J., Koszul equivalences in \(A_\infty \)-algebras, N.Y. J. Math., 14, 325-378, 2008, MR 2430869 ·Zbl 1191.16011
[48]Lü, J.-F.; Mao, X.-F.; Zhang, J. J., Nakayama automorphism and applications, Trans. Am. Math. Soc., 369, 4, 2425-2460, 2017 ·Zbl 1396.16004
[49]Manin, Y. I., Quantum Groups and Noncommutative Geometry, CRM Short Courses, 2018, Centre de Recherches Mathématiques/Springer: Centre de Recherches Mathématiques/Springer [Montreal], QC/Cham, With a contribution by Theo Raedschelders and Michel Van den Bergh. MR 3839605 ·Zbl 1430.16001
[50]Montgomery, S., Algebra properties invariant under twisting, (Hopf Algebras in Noncommutative Geometry and Physics. Hopf Algebras in Noncommutative Geometry and Physics, Lecture Notes in Pure and Appl. Math., vol. 239, 2005, Dekker: Dekker New York), 229-243, MR 2106932 ·Zbl 1080.16042
[51]Mori, I.; Smith, S. P., m-Koszul Artin-Schelter regular algebras, J. Algebra, 446, 373-399, 2016, MR 3421098 ·Zbl 1378.16018
[52]Polishchuk, A.; Positselski, L., Quadratic Algebras, University Lecture Series, vol. 37, 2005, American Mathematical Society: American Mathematical Society Providence, RI, MR 2177131 ·Zbl 1145.16009
[53]Radford, D. E., Hopf Algebras, Series on Knots and Everything, vol. 49, 2012, World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ, MR 2894855 ·Zbl 1266.16036
[54]Raedschelders, T.; Van den Bergh, M., The Manin Hopf algebra of a Koszul Artin-Schelter regular algebra is quasi-hereditary, Adv. Math., 305, 601-660, 2017, MR 3570144 ·Zbl 1405.16044
[55]Reyes, M.; Rogalski, D.; Zhang, J. J., Skew Calabi-Yau algebras and homological identities, Adv. Math., 264, 308-354, 2014 ·Zbl 1336.16011
[56]Reyes, M.; Rogalski, D.; Zhang, J. J., Skew Calabi-Yau triangulated categories and Frobenius Ext-algebras, Trans. Am. Math. Soc., 369, 1, 309-340, 2017 ·Zbl 1430.18011
[57]Rogalski, D., Noncommutative Projective Geometry, (Noncommutative Algebraic Geometry. Noncommutative Algebraic Geometry, Math. Sci. Res. Inst. Publ., vol. 64, 2016, Cambridge Univ. Press: Cambridge Univ. Press New York), 13-70, MR 3618472 ·Zbl 1386.14016
[58]Rogalski, D., Artin-Schelter regular algebras, Contemp. Math., 2024, in press ·Zbl 07914950
[59]Römer, T., On the regularity over positively graded algebras, J. Algebra, 319, 1, 1-15, 2008, MR 2378058 ·Zbl 1134.13007
[60]Schauenburg, P., Hopf bi-Galois extensions, Commun. Algebra, 24, 12, 3797-3825, 1996, MR 1408508 ·Zbl 0878.16020
[61]Smith, S. P., Some finite-dimensional algebras related to elliptic curves, (Representation Theory of Algebras and Related Topics. Representation Theory of Algebras and Related Topics, Mexico City, 1994. Representation Theory of Algebras and Related Topics. Representation Theory of Algebras and Related Topics, Mexico City, 1994, CMS Conf. Proc., vol. 19, 1996, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 315-348, MR 1388568 ·Zbl 0856.16009
[62]Smith, S. P.; Stafford, J. T., Regularity of the four-dimensional Sklyanin algebra, Compos. Math., 83, 3, 259-289, 1992, MR 1175941 ·Zbl 0758.16001
[63]Ştefan, D.; Van Oystaeyen, F., The Wedderburn-Malcev theorem for comodule algebras, Commun. Algebra, 27, 8, 3569-3581, 1999 ·Zbl 0945.16032
[64]Stephenson, D.; Zhang, J. J., Growth of graded Noetherian rings, Proc. Am. Math. Soc., 125, 6, 1593-1605, 1997 ·Zbl 0879.16011
[65]Turaev, V.; Virelizier, A., Monoidal Categories and Topological Field Theory, Progress in Mathematics, vol. 322, 2017, Birkhäuser/Springer: Birkhäuser/Springer Cham, MR 3674995 ·Zbl 1423.18001
[66]Ulbrich, K.-H., Galois extensions as functors of comodules, Manuscr. Math., 59, 4, 391-397, 1987, MR 915993 ·Zbl 0634.16027
[67]Ulbrich, K.-H., Smash products and comodules of linear maps, Tsukuba J. Math., 14, 2, 371-378, 1990 ·Zbl 0742.16019
[68]Van den Bergh, M., Calabi-Yau algebras and superpotentials, Sel. Math. New Ser., 21, 2, 555-603, 2015, MR 3338683 ·Zbl 1378.16016
[69]Walton, C.; Wang, X., On quantum groups associated to non-Noetherian regular algebras of dimension 2, Math. Z., 284, 1-2, 543-574, 2016, MR 3545505 ·Zbl 1388.16032
[70]Witherspoon, S. J., Hochschild Cohomology for Algebras, Graduate Studies in Mathematics, vol. 204, 2019, American Mathematical Society: American Mathematical Society Providence, RI, MR 3971234 ·Zbl 1462.16002
[71]Yekutieli, A., The rigid dualizing complex of a universal enveloping algebra, J. Pure Appl. Algebra, 150, 1, 85-93, 2000 ·Zbl 1004.16007
[72]Yekutieli, A., Derived Categories, Cambridge Studies in Advanced Mathematics, vol. 183, 2020, Cambridge University Press: Cambridge University Press Cambridge, MR 3971537 ·Zbl 1444.18001
[73]Yu, X.-L.; Wang, X.-T., Calabi-Yau property of quantum groups of \(\operatorname{GL}(2)\) representation type, J. Algebra Appl., 22, 6, Article 2450104 pp., 2023, MR 4590310 ·Zbl 1530.16036
[74]Zhang, J. J., Twisted graded algebras and equivalences of graded categories, Proc. Lond. Math. Soc. (3), 72, 2, 281-311, 1996, MR 1367080 ·Zbl 0852.16005
[75]Zhang, J. J., Non-Noetherian regular rings of dimension 2, Proc. Am. Math. Soc., 126, 6, 1645-1653, 1998, MR 1459158 ·Zbl 0902.16036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp