[1] | Abramenko, P.; Rapinchuk, A. S.; Rapinchuk, I. A., Applications of the Fixed Point Theorem for group actions on buildings to algebraic groups over polynomial rings. J. Algebra (2023) |
[2] | Amitsur, S., Generic splitting fields of central simple algebras. Ann. Math. (2), 1, 8-43 (1955) ·Zbl 0066.28604 |
[3] | Borel, A., Linear Algebraic Groups. GTM (1991), Springer ·Zbl 0726.20030 |
[4] | Borel, A.; Springer, T. A., Rationality properties of linear algebraic groups II. Tohoku Math. J., 443-497 (1968) ·Zbl 0211.53302 |
[5] | Bourbaki, N., Groupes and algèbres de Lie, ch. IV-VI (1968), Hermann ·Zbl 0186.33001 |
[6] | Bruhat, F.; Tits, J., Groupes réductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHES, 5-251 (1972) ·Zbl 0254.14017 |
[7] | Bruhat, F.; Tits, J., Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Publ. Math. IHES, 5-184 (1984) |
[8] | Bruhat, F.; Tits, J., Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., 671-698 (1987) ·Zbl 0657.20040 |
[9] | Calmès, B.; Fasel, J., Groupes classiques, Autour des schémas en groupes, vol. II. Panoramas et Synthèses, 1-133 (2015), Soc. math. de France ·Zbl 1360.20048 |
[10] | Chernousov, V., The kernel of the Rost invariant, Serre’s Conjecture II and the Hasse principle for quasi-split groups \({}^{3 , 6}D_4, E_6\) and \(E_7\). Math. Ann., 297-330 (2003) ·Zbl 1036.20040 |
[11] | Chernousov, V., Variations on a theme of groups splitting by a quadratic extension and Grothendieck-Serre conjecture for group schemes \(F_4\) with trivial \(g_3\) invariant. Doc. Math., 147-169 (2010), Extra vol.: Andrei A. Suslin sixtieth birthday ·Zbl 1210.14050 |
[12] | Chernousov, V.; Gille, P.; Pianzola, A., Torsors over the punctured affine line. Am. J. Math., 6, 1541-1583 (2012) ·Zbl 1279.14059 |
[13] | Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., The genus of a division algebra and the unramified Brauer group. Bull. Math. Sci., 211-240 (2013) ·Zbl 1293.16015 |
[14] | Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., On the size of the genus of a division algebra. Proc. Steklov Inst. Math., 1, 63-93 (2016) ·Zbl 1356.16013 |
[15] | Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., On some finiteness properties of algebraic groups over finitely generated fields. C. R. Acad. Sci. Paris, Ser. I, 869-873 (2016) ·Zbl 1376.14049 |
[16] | Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., Spinor groups with good reduction. Compos. Math., 484-527 (2019) ·Zbl 1443.11031 |
[17] | Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., The finiteness of the genus of a finite-dimensional division algebras, and some generalizations. Isr. J. Math., 2, 747-799 (2020) ·Zbl 1467.16018 |
[18] | Collins, M., On Jordan’s theorem for complex linear groups. J. Group Theory, 4, 411-423 (2007) ·Zbl 1125.20033 |
[19] | Colliot-Thélène, J.-L., Birational Invariants, Purity, and the Gersten Conjecture. Proc. Symp. Pure Math., 1-64 (1995), AMS ·Zbl 0834.14009 |
[20] | Conrad, B., Reductive group schemes, 93-444 ·Zbl 1349.14151 |
[21] | Conrad, B., Non-split reductive groups over \(\mathbb{Z} \), 193-253 ·Zbl 1356.14033 |
[22] | (Demazure, M.; Grothendieck, A., Schémas en groupes, vol. III: Structure des schémas en groupes réductifs (SGA3). Schémas en groupes, vol. III: Structure des schémas en groupes réductifs (SGA3), Lect. Notes Math., vol. 153 (1970), Springer) |
[23] | Fedorov, R.; Panin, I., A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields. Publ. Math. IHES, 169-193 (2015) ·Zbl 1330.14077 |
[24] | Fried, M. D.; Jarden, M., Field Arithmetic (2005), Springer ·Zbl 1055.12003 |
[25] | Garibaldi, S.; Merkurjev, A.; Serre, J.-P., Cohomological Invariants in Galois Cohomology. University Lecture Series (2003), AMS ·Zbl 1159.12311 |
[26] | Gille, P., Torseurs sur la droite affine. Transform. Groups. Transform. Groups, 3, 267-269 (2005), errata |
[27] | P. Gille, S. Gosavi, Bruhat-Tits decomposition, preprint, 2021. |
[28] | Görtz, U.; Wedhorn, T., Algebraic Geometry I. Schemes – with Examples and Exercises (2020), Springer ·Zbl 1444.14001 |
[29] | Gross, B. H., Groups over \(\mathbb{Z} \). Invent. Math., 263-279 (1996) ·Zbl 0846.20049 |
[30] | Guo, N., The Grothendieck-Serre conjecture over semilocal Dedekind rings. Transform. Groups, 3, 897-917 (2022) ·Zbl 1506.14096 |
[31] | Harder, G., Halbeinfache Gruppenschemata über Dedekindringen. Invent. Math., 165-191 (1967) ·Zbl 0158.39502 |
[32] | Izhboldin, O. T., Motivic equivalence of quadratic forms. Doc. Math., 341-351 (1998) ·Zbl 0957.11019 |
[33] | Huppert, B., Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften (1967), Springer: Springer Berlin-New York ·Zbl 0217.07201 |
[34] | Kaletha, T.; Prasad, G., Bruhat-Tits Theory: a New Approach (2023), Cambridge Univ. Press ·Zbl 1516.20003 |
[35] | Karpenko, N. A., Criteria of motivic equivalence for quadratic forms and central simple algebras. Math. Ann., 3, 585-611 (2000) ·Zbl 0965.11015 |
[36] | Kato, K., A Hasse principle for two dimensional global fields, with an appendix by J.-L. Colliot-Thélène. J. Reine Angew. Math., 142-183 (1986) ·Zbl 0576.12012 |
[37] | Klyachko, A. A., Tori without affect in semisimple groups, 67-78, (in Russian) ·Zbl 0770.20023 |
[38] | Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P., The Book of Involutions (1998), AMS ·Zbl 0955.16001 |
[39] | Lam, T.-Y., A First Course in Noncommutative Rings. GTM (2001), Springer ·Zbl 0980.16001 |
[40] | Lam, T. Y., Introduction to Quadratic Forms over Fields. GSM (2005), AMS ·Zbl 1068.11023 |
[41] | Lang, S., Algebra. GTM (2002), Springer ·Zbl 0984.00001 |
[42] | Maclachlan, C.; Reid, A. W., The Arithmetic of Hyperbolic 3-Manifolds. GTM (2003), Springer ·Zbl 1025.57001 |
[43] | Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups (1991), Springer ·Zbl 0732.22008 |
[44] | Matzri, E., A birational interpretation of Severi-Brauer varieties. Commun. Algebra, 2, 484-489 (2020) ·Zbl 1433.16020 |
[45] | Merkurjev, A. S., On the norm residue symbol of degree 2. Dokl. Akad. Nauk SSSR, 3, 542-547 (1981) |
[46] | Merkurjev, A. S.; Suslin, A. A., \(K\)-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR, Ser. Mat., 5, 1011-1046 (1982) |
[47] | Milne, J. S., Étale cohomology (1980), Princeton Univ. Press ·Zbl 0433.14012 |
[48] | Nart, E.; Xarles, X., Additive reduction of algebraic tori. Arch. Math. (Basel), 5, 460-466 (1991) ·Zbl 0782.14042 |
[49] | Nisnevich, Y. A., Étale cohomology and Arithmetic of Semisimple Groups (1982), Harvard University, ProQuest LLC: Harvard University, ProQuest LLC Ann Arbor, MI, Thesis (Ph.D.) |
[50] | Nisnevich, Y. A., Espaces homogènes principaux rationnellement triviaux et arithmètique des schémas en groupes réductifs sur les anneaux de Dedekind. C. R. Acad. Sci. Paris, Ser. I, Math., 1, 5-8 (1984) ·Zbl 0587.14033 |
[51] | Neukirch, J.; Schmidt, A.; Wingberg, K., Cohomology of Number Fields (2000), Springer ·Zbl 0948.11001 |
[52] | Panin, I., Proof of Grothendieck-Serre’s conjecture on principle bundles over regular local rings containing a finite field |
[53] | Petersson, H., A survey on Albert algebras. Transform. Groups, 1, 219-278 (2019) ·Zbl 1457.17025 |
[54] | Platonov, V. P.; Rapinchuk, A. S., Algebraic Groups and Number Theory (1993), Academic Press ·Zbl 0806.11002 |
[55] | Prasad, G., A new approach to unramified descent in Bruhat-Tits theory. Am. J. Math., 215-253 (2020) ·Zbl 1480.20079 |
[56] | Prasad, G.; Rapinchuk, A. S., Irreducible tori in semisimple groups. Int. Math. Res. Not., 1229-1242 (2001) ·Zbl 1057.22025 |
[57] | Prasad, G.; Rapinchuk, A. S., Existence of irreducible \(\mathbb{R} \)-regular elements in Zariski-dense subgroups. Math. Res. Lett., 1, 21-32 (2003) ·Zbl 1029.22020 |
[58] | Prasad, G.; Rapinchuk, A. S., Weakly commensurable arithmetic groups and isospectral locally symmetric spaces. Publ. Math. IHES, 113-184 (2009) ·Zbl 1176.22011 |
[59] | Prasad, G.; Rapinchuk, A. S., On the fields generated by the lengths of closed geodesics in locally symmetric spaces. Geom. Dedic., 79-120 (2014) ·Zbl 1308.53077 |
[60] | Prasad, G.; Rapinchuk, A. S., Weakly commensurable groups, with applications to differential geometry, 495-524 |
[61] | Prasad, G.; Rapinchuk, A. S., Generic elements of a Zariski-dense subgroup form an open subset. Trans. Mosc. Math. Soc., 299-314 (2017) ·Zbl 1423.22015 |
[62] | Raghunathan, M. S., Discrete Subgroups of Lie Groups (1972), Springer ·Zbl 0254.22005 |
[63] | Raghunathan, M. S.; Ramanathan, A., Principal bundles on the affine line. Proc. Indian Acad. Sci. Math. Sci., 2-3, 137-145 (1984) ·Zbl 0587.14007 |
[64] | Rapinchuk, A. S., Towards the eigenvalue rigidity of Zariski-dense subgroups, 247-269 ·Zbl 1373.20063 |
[65] | Rapinchuk, A. S.; Rapinchuk, I. A., On division algebras having the same maximal subfields. Manuscr. Math., 273-293 (2010) ·Zbl 1205.16015 |
[66] | Rapinchuk, A. S.; Rapinchuk, I. A., Linear algebraic groups with good reduction. Res. Math. Sci., 3 (2020), 66pp. ·Zbl 1466.20032 |
[67] | Rapinchuk, A. S.; Rapinchuk, I. A., Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields. J. Number Theory, 228-260 (2022) ·Zbl 1489.11059 |
[68] | Rapinchuk, A. S.; Rapinchuk, I. A., Properness of the global-to-local map for algebraic groups with toric connected component and other finiteness properties. Math. Res. Lett., 3, 913-943 (2023) ·Zbl 1537.11050 |
[69] | Rapinchuk, I., Residue maps, Azumaya algebras, and buildings ·Zbl 07854090 |
[70] | I. Rapinchuk, Finiteness results for the unramified cohomology of conics and applications, in preparation. |
[71] | Reid, A., Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds. Duke Math. J., 215-228 (1992) ·Zbl 0776.58040 |
[72] | Rost, M., A (mod 3) invariant for exceptional Jordan algebras. C. R. Acad. Sci. Paris, Ser. I, 823-827 (1991) ·Zbl 0756.17014 |
[73] | Saltman, D., Norm polynomials and algebras. J. Algebra, 333-345 (1980) ·Zbl 0426.16007 |
[74] | Saltman, D., Lectures on Division Algebras. CBMS Regional Conference Series in Mathematics (1999), AMS ·Zbl 0934.16013 |
[75] | Scott, L., Integral equivalence of permutation representations, 262-274 ·Zbl 0828.20004 |
[76] | Serre, J.-P., Algebraic Groups and Class Fields. GTM (1988), Springer ·Zbl 0703.14001 |
[77] | Serre, J.-P., Galois Cohomology (1997), Springer ·Zbl 0902.12004 |
[78] | Springer, T. A., The classification of reduced exceptional simple Jordan algebras. Indag. Math., 414-422 (1960) ·Zbl 0098.02901 |
[79] | Tits, J., Classification of algebraic semisimple groups, 33-62 ·Zbl 0238.20052 |
[80] | Vinberg, E. B., Rings of definition of dense subgroups of semisimple linear groups. Izv. Akad. Nauk SSSR, Ser. Math., 45-55 (1971) ·Zbl 0252.20043 |
[81] | Vishik, A., Integral Motives of Quadrics (1998), Max Planck Institute für Mathematik: Max Planck Institute für Mathematik Bonn, 82 pp. |
[82] | Vishik, A., Motives of quadrics with applications to the theory of quadratic forms, 25-101 ·Zbl 1047.11033 |
[83] | Voskresenskiī, V. E., Algebraic Groups and Their Birational Invariants (1998), AMS ·Zbl 0974.14034 |
[84] | Weisfeiler, B., Semisimple algebraic groups which are split over a quadratic extension. Math. USSR, Izv., 1, 57-72 (1971) ·Zbl 0252.20035 |
[85] | Weisfeiler, B., Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups. Ann. Math., 2, 271-315 (1984) ·Zbl 0568.14025 |