[1] | K. Adiprasito, J. Huh and E. Katz, Hodge theory for combinatorial geometries, Annals of Math. 188 (2018), 381-452. 55, 73, 138, 143 ·Zbl 1442.14194 |
[2] | K. Adiprasito and R. Sanyal, Whitney numbers of arrangements via measure concentration of intrinsic volumes, preprint (2016), 9 pp.; arXiv:1606.09412. 138, 142 |
[3] | A. C. Aitken, The monomial expansion of determinantal symmetric functions, Proc. Roy. Soc. Edin-burgh, Sect. A 61 (1943), 300-310. 140 ·Zbl 0063.00032 |
[4] | A. D. Alexandrov, Zur Theorie der gemischten Volumina von konvexen Körpern IV (in German), Mat. Sbornik 3 (1938), 227-251. 74, 141, 142 ·JFM 64.1347.01 |
[5] | N. Alon, The number of spanning trees in regular graphs, Random Structures Algorithms 1 (1990), 175-181. 145 ·Zbl 0820.05033 |
[6] | N. Alon and J. H. Spencer, The probabilistic method (fourth ed.), John Wiley, Hoboken, NJ, 2016, 375 pp. ·Zbl 1333.05001 |
[7] | N. Anari, K. Liu, S. Oveis Gharan and C. Vinzant, Log-concave polynomials III: Mason’s Ultra-log-concavity conjecture for independent sets of matroids, preprint (2018), 11 pp.; arXiv:1811.01600. 56, 73, 138, 139, 143 |
[8] | N. Anari, K. Liu, S. Oveis Gharan and C. Vinzant, Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid, Annals of Math., to appear; extended abstract in Proc. 51-st STOC, ACM, New York, 2019, 1-12. 73, 138 ·Zbl 1433.68606 |
[9] | F. Ardila, G. Denham and J. Huh, Lagrangian geometry of matroids, Jour. AMS 36 (2023), 727-794. 73, 138 ·Zbl 1512.05068 |
[10] | S. Backman, C. Eur and C. Simpson, Simplicial generation of Chow rings of matroids, Jour. EMS, to appear, 37 pp.; arXiv:1905.07114. 73 ·Zbl 1447.05046 |
[11] | JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 ·Zbl 1547.05035 |
[12] | M. O. Ball and J. S. Provan, Calculating bounds on reachability and connectedness in stochastic networks, Networks 13 (1983), 253-278. 140 ·Zbl 0569.68053 |
[13] | E. F. Beckenbach and R. Bellman, Inequalities (Second ed.), Springer, New York, 1965, 198 pp. 140 ·Zbl 0128.27401 |
[14] | C. Benedetti, R. S. González D’León, C. R. H. Hanusa, P. E. Harris, A. Khare, A. H. Morales and M. Yip, A combinatorial model for computing volumes of flow polytopes, Trans. AMS 372 (2019), 3369-3404. 141 ·Zbl 1420.05011 |
[15] | C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989, 255 pp. 139 ·Zbl 0674.05001 |
[16] | F. Bergeron, G. Labelle and P. Leroux, Combinatorial species and tree-like structures, Cambridge Univ. Press, Cambridge, UK, 1998, 457 pp. 140 ·Zbl 0888.05001 |
[17] | A. Berget, H. Spink and D. Tseng, Log-concavity of matroid h-vectors and mixed Eulerian numbers, Duke Math. J., to appear; preprrint (2020), 29 pp.; arXiv:2005.01937. 73, 138, 140 |
[18] | O. Bernardi, T. Kálmán and A. Postnikov, Universal Tutte polynomial, Adv. Math. 402 (2022), Paper No. 108355, 74 pp. 139 ·Zbl 1487.05130 |
[19] | N. Biggs, Algebraic graph theory, Cambridge Univ. Press, London, 1974, 170 pp. 144 ·Zbl 0284.05101 |
[20] | A. Björner, The unimodality conjecture for convex polytopes, Bull. AMS 4 (1981), 187-188. 142 ·Zbl 0458.52004 |
[21] | A. Björner and M. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory A 58 (1991), 85-114. 141 ·Zbl 0742.05084 |
[22] | A. Björner and G. Ziegler, Introduction to greedoids, in Matroid applications, Cambridge Univ. Press, Cambridge, UK, 1992, 284-357. 67, 140 ·Zbl 0772.05026 |
[23] | T. Braden, J. Huh, J. P. Matherne, N. Proudfoot and B. Wang, A semi-small decomposition of the Chow ring of a matroid, Adv. Math. 409 (2022), Paper No. 108646, 49 pp. 73, 143 ·Zbl 1509.14012 |
[24] | T. Braden, J. Huh, J. P. Matherne, N. Proudfoot and B. Wang, Singular Hodge theory for combinatorial geometries, preprint (2020), 95 pp.; arXiv:2010.06088. 73, 143 |
[25] | P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, in Handbook of enumerative combinatorics, CRC Press, Boca Raton, FL, 2015, 437-483. 54, 137, 141 ·Zbl 1327.05051 |
[26] | P. Brändén and J. Huh, Hodge-Riemann relations for Potts model partition functions, preprint (2018), 7 pp.; arXiv:1811.01696. 73, 138 |
[27] | P. Brändén and J. Huh, Lorentzian polynomials, Annals of Math. 192 (2020), 821-891. 56, 62, 73, 74, 85, 138, 139, 140, 143 |
[28] | P. Brändén and J. Leake, Lorentzian polynomials on cones and the Heron-Rota-Welsh conjecture, preprint (2021), 10 pp.; arXiv:2110.00487. 143 |
[29] | P. Brändén, J. Leake and I. Pak, Lower bounds for contingency tables via Lorentzian polynomials, Israel Journal of Math., to appear, 28 pp.; arXiv:2008.05907. 73 |
[30] | F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. AMS 81 (1989), no. 413, 106 pp. 54, 137, 141, 146 ·Zbl 0697.05011 |
[31] | F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, in Jerusalem combinatorics, AMS, Providence, RI, 1994, 71-89. 54, 137, 139 |
[32] | G. Brightwell and D. West, Partially ordered sets, Ch. 11 in Handbook of discrete and combinatorial mathematics, CRC Press, Boca Raton, FL, 2000, 717-752. 141 |
[33] | JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 ·Zbl 1547.05035 |
[34] | G. Brightwell and P. Winkler, Counting linear extensions, Order 8 (1991), 225-247. 145 ·Zbl 0759.06001 |
[35] | T. Brylawski, The broken-circuit complex, Trans. AMS 234 (1977), 417-433. 138 ·Zbl 0368.05022 |
[36] | T. Brylawski, The Tutte polynomial. I. General theory, in Matroid theory and its applications, Liguori, Naples, 1982, 125-275. 138, 139 |
[37] | T. Brylawski and J. Oxley, The Tutte polynomial and its applications, in Matroid applications, Cambridge Univ. Press, Cambridge, UK, 1992, 123-225. 138 ·Zbl 0769.05026 |
[38] | Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Springer, Berlin, 1988, 331 pp. 141 ·Zbl 0633.53002 |
[39] | S. H. Chan and I. Pak, Introduction to the combinatorial atlas, Expo. Math. 40 (2022), 1014-1048. 73, 143 ·Zbl 1504.05027 |
[40] | S. H. Chan and I. Pak, Correlation inequalities for linear extensions, preprint (2022), 23 pp.; arXiv:2211.16637. 69 |
[41] | S. H. Chan and I. Pak, Linear extensions of finite posets, preprint (2023), 55 pages. 125 |
[42] | S. H. Chan, I. Pak and G. Panova, Extensions of the Kahn-Saks inequality for posets of width two, Combinatorial Theory 3 (2023), no. 1, Paper No. 8, 34 pp. 74, 125, 141, 142 |
[43] | S. H. Chan, I. Pak and G. Panova, The cross-product conjecture for width two posets, Trans. AMS 375 (2022), 5923-5961. 74 ·Zbl 1496.05010 |
[44] | S. H. Chan, I. Pak and G. Panova, Effective poset inequalities, SIAM J. Discrete Math. 37 (2023), 1842-1880. ·Zbl 1520.05017 |
[45] | Y. Choe, J. Oxley, A. Sokal and D. Wagner, Homogeneous multivariate polynomials with the half-plane property, Adv. Appl. Math. 32 (2004), 88-187. 85 ·Zbl 1054.05024 |
[46] | S. Chmutov, Topological Tutte Polynomial, in Handbook on the Tutte Polynomial and Related Topics, to appear, CRC Press, Boca Raton, FL, 2021, 22 pp.; arXiv:1708.08132. 139 |
[47] | F. R. K. Chung, P. C. Fishburn and R. L. Graham, On unimodality for linear extensions of partial orders, SIAM J. Algebraic Discrete Methods 1 (1980), 405-410. 141 ·Zbl 0501.06005 |
[48] | D. Cordero-Erausquin, B. Klartag, Q. Merigot and F. Santambrogio, One more proof of the Alexandrov-Fenchel inequality, C.R. Math. Acad. Sci. Paris 357 (2019), no. 8, 676-680. 141 ·Zbl 1428.52013 |
[49] | J. E. Dawson, A collection of sets related to the Tutte polynomial of a matroid, in Lecture Notes in Math. 1073, Springer, Berlin, 1984, 193-204 138, 139 ·Zbl 0544.05014 |
[50] | J. A. De Loera, Y. Kemper and S. Klee, h-vectors of small matroid complexes, Electron. J. Combin. 19 (2012), no. 1, Paper 14, 11 pp. 139 ·Zbl 1244.05238 |
[51] | C. Defant and N. Kravitz, Friends and strangers walking on graphs, Comb. Theory 1 (2021), Paper No. 6, 34 pp. ·Zbl 1498.05148 |
[52] | P. Dembowski, Finite geometries, Springer, Berlin, 1968, 375 pp. 139 ·Zbl 0159.50001 |
[53] | S. Dittmer and I. Pak, Counting linear extensions of restricted posets, preprint (2018), 33 pp.; arXiv:1802.06312. 141, 145 |
[54] | J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, 69-87. 139 ·Zbl 0268.05019 |
[55] | JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 ·Zbl 1547.05035 |
[56] | C. Eur and J. Huh, Logarithmic concavity for morphisms of matroids, Adv. Math. 367 (2020), 107094, 19 pp. 60, 139 ·Zbl 1437.05039 |
[57] | T. Feder and M. Mihail, Balanced Matroids, in 24th STOC (1992), ACM, New York, 26-38. 138 |
[58] | W. Feit, The degree formula for the skew-representations of the symmetric group, Proc. AMS 4 (1953), 740-744. 140 ·Zbl 0052.02302 |
[59] | S. Felsner and L. Wernisch, Markov chains for linear extensions, the two-dimensional case, in Proc. 8th SODA (1997), 239-247. 141 ·Zbl 1321.68369 |
[60] | P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge Univ. Press, Cambridge, 2009, 810 pp. 140, 141 ·Zbl 1165.05001 |
[61] | W. Fulton, Young tableaux, Cambridge Univ. Press, Cambridge, UK, 1997, 260 pp. 140 ·Zbl 0878.14034 |
[62] | R. S. González D’León, C. R. H. Hanusa, A. H. Morales and M. Yip, Column convex matrices, G-cyclic orders, and flow polytopes, Discrete Comput. Geom. 70 (2023), 1593-1631. 141 ·Zbl 1529.52010 |
[63] | G. Gordon and E. McMahon, Interval partitions and activities for the greedoid Tutte polynomial, Adv. Appl. Math. 18 (1997), 33-49. 144 ·Zbl 0906.05014 |
[64] | I. Gorodezky and I. Pak, Generalized loop-erased random walks and approximate reachability, Random Structures Algorithms 44 (2014), 201-223. 139, 140 ·Zbl 1303.05181 |
[65] | J. Gregor, On quadratic Hurwitz forms, Apl. Mat. 26 (1981), 142-153. 85 ·Zbl 0457.15016 |
[66] | G. Grimmett, The random-cluster model, Springer, Berlin, 2006, 377 pp. 139 ·Zbl 1122.60087 |
[67] | H. Guo and M. Jerrum, A polynomial-time approximation algorithm for all-terminal network reliability, SIAM J. Comput. 48 (2019), 964-978. 140 ·Zbl 1430.68441 |
[68] | L. Gurvits, A short proof, based on mixed volumes, of Liggett’s theorem on the convolution of ultra-logconcave sequences, Electron. J. Combin. 16 (2009), no. 1, Note 5, 5 pp. 142 ·Zbl 1159.05054 |
[69] | R. K. Guy, The strong law of small numbers, Amer. Math. Monthly 95 (1988), 697-712. 142 ·Zbl 0658.10001 |
[70] | G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities (second ed.), Cambridge Univ. Press, Cambridge, UK, 1952, 324 pp. 140 ·Zbl 0047.05302 |
[71] | O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972), 190-243. 138 ·Zbl 0228.05131 |
[72] | J. Herzog and T. Hibi, Discrete polymatroids, J. Algebraic Combin. 16 (2002), 239-268. 139 ·Zbl 1012.05046 |
[73] | S. G. Hoggar, Chromatic polynomials and logarithmic concavity, J. Combin. Theory, Ser. B 16 (1974), 248-254. 140 ·Zbl 0268.05104 |
[74] | H. Huang, Induced subgraphs of hypercubes and a proof of the sensitivity conjecture, Annals of Math. 190 (2019), 949-955. 143 ·Zbl 1427.05116 |
[75] | J. Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, Jour. AMS 25 (2012), 907-927. 73, 138, 140 ·Zbl 1243.14005 |
[76] | J. Huh, h-vectors of matroids and logarithmic concavity, Adv. Math. 270 (2015), 49-59. 73, 138, 140 ·Zbl 1304.05013 |
[77] | J. Huh, Combinatorial applications of the Hodge-Riemann relations, in Proc. ICM Rio de Janeiro, vol. IV, World Sci., Hackensack, NJ, 2018, 3093-3111. 54, 137, 138 |
[78] | JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 ·Zbl 1547.05035 |
[79] | J. Huh and E. Katz, Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math. Ann. 354 (2012), 1103-1116. 73, 138 ·Zbl 1258.05021 |
[80] | J. Huh, B. Schröter and B. Wang, Correlation bounds for fields and matroids, J. Eur. Math. Soc. 24 (2022), 1335-1351. 55, 73 ·Zbl 1485.05023 |
[81] | J. Huh and B. Wang, Enumeration of points, lines, planes, etc., Acta Math. 218 (2017), 297-317. 73 ·Zbl 1386.05021 |
[82] | C. Ikenmeyer and I. Pak, What is in #P and what is not?, preprint (2022), 82 pp.; extended abstract in Proc. 63rd FOCS (2022); arXiv:2204.13149. 145 |
[83] | M. Jerrum, Two remarks concerning balanced matroids, Combinatorica 26 (2006), 733-742. 139 ·Zbl 1121.05027 |
[84] | J. Kahn, Some non-Sperner paving matroids, Bull. LMS 12 (1980), 268. 139 ·Zbl 0415.05017 |
[85] | J. Kahn and M. Saks, Balancing poset extensions, Order 1 (1984), 113-126. ·Zbl 0561.06004 |
[86] | A. Karzanov and L. Khachiyan, On the conductance of order Markov chains, Order 8 (1991), 7-15. ·Zbl 0736.06002 |
[87] | Yu. Kempner and V. E. Levit, Geometry of poset antimatroids, Electron. Notes Discrete Math. 40 (2013), 169-173. 140 |
[88] | B. Korte, L. Lovász and R. Schrader, Greedoids, Springer, Berlin, 1991, 211 pp. 67, 140, 144 ·Zbl 0733.05023 |
[89] | C. Krattenthaler, Combinatorial proof of the log-concavity of the sequence of matching numbers, J. Combin. Theory, Ser. A 74 (1996), 351-354. 145 ·Zbl 0847.05077 |
[90] | J. P. S. Kung, The geometric approach to matroid theory, in Gian-Carlo Rota on combinatorics, Birkhäuser, Boston, MA, 1995, 604-622; available at tinyurl.com/yds5pcbm 142 |
[91] | J. P. S. Kung, Letter to I. Pak (October 18, 2021), available at tinyurl.com/apu73nzw 146 |
[92] | M. Lenz, Matroids and log-concavity, preprint (2011), 9 pp.; arXiv:1106.2944. 55, 139 |
[93] | M. Lenz, The f -vector of a representable-matroid complex is log-concave, Adv. Appl. Math. 51 (2013), 543-545. 138 ·Zbl 1301.05382 |
[94] | A. Lichnerowic, Géométrie des groupes de transformations (in French), Dunod, Paris, 1958, 193 pp. 142 ·Zbl 0096.16001 |
[95] | T. M. Liggett, Ultra logconcave sequences and negative dependence, J. Combin. Theory, Ser. A 79 (1997), 315-325. 142 ·Zbl 0888.60013 |
[96] | A. W. Marcus, D. A. Spielman and N. Srivastava, Interlacing families I: Bipartite Ramanujan graphs of all degrees, Annals of Math. 182 (2015), 307-325. 143 ·Zbl 1316.05066 |
[97] | J. H. Mason, Matroids: unimodal conjectures and Motzkin’s theorem, in Proc. Conf. Combin. Math., Inst. Math. Appl., Southend-on-Sea, UK, 1972, 207-220; available at tinyurl.com/7w7wjz6v 55, 138 |
[98] | P. Matthews, Generating a random linear extension of a partial order, Ann. Probab. 19 (1991), 1367-1392. ·Zbl 0728.60009 |
[99] | I. Mező, Combinatorics and number theory of counting sequences, CRC Press, Boca Raton, FL, 2020, 479 pp. 65 ·Zbl 1445.05001 |
[100] | S. Murai, T. Nagaoka and A. Yazawa, Strictness of the log-concavity of generating polynomials of matroids, J. Combin. Theory, Ser. A 181 (2021), Paper 105351, 22 pp. 57, 61, 73, 140 ·Zbl 1464.05035 |
[101] | K. Murota, Discrete convex analysis, SIAM, Philadelphia, PA, 2003, 389 pp. 139 ·Zbl 1029.90055 |
[102] | JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 ·Zbl 1547.05035 |
[103] | O’H90] K. M. O’Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Combin. Theory, Ser. A 53 (1990), 29-52. 137 ·Zbl 0697.05002 |
[104] | J. Oxley, Matroid theory, Oxford Univ. Press, Oxford, 1992, 532 pp. 138, 139, 142 ·Zbl 0784.05002 |
[105] | I. Pak, Lectures on discrete and polyhedral geometry, monograph draft (2009), 440 pp.; available at math.ucla.edu/˜pak/book.htm |
[106] | I. Pak, Combinatorial inequalities, Notices AMS 66 (2019), 1109-1112; an expanded version of the paper is available at tinyurl.com/py8sv5v6 74, 141, 145 ·Zbl 1423.05028 |
[107] | I. Pak, What is a combinatorial interpretation?, preprint (2022), 58 pp.; to appear in Open Problems in Algebraic Combinatorics, AMS, Providence, RI; arXiv:2209.06142. 145 |
[108] | I. Pak and G. Panova, Strict unimodality of q-binomial coefficients, C.R. Math. Acad. Sci. Paris 351 (2013), 415-418. 137 ·Zbl 1272.05217 |
[109] | A. Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not., no. 6 (2009), 1026-1106. 139 ·Zbl 1162.52007 |
[110] | R. A. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89 (1982), 721-734. 137, 138 ·Zbl 0509.05007 |
[111] | R. C. Read, An introduction to chromatic polynomials, J. Combin. Theory 385 4 (1968), 52-71. 140 ·Zbl 0173.26203 |
[112] | R. C. Read and G. F. Royle, Chromatic roots of families of graphs, in Graph theory, combinatorics, and applications, vol. 2, Wiley, New York, 1991, 1009-1029. 142 ·Zbl 0841.05034 |
[113] | R. C. Read and W. T. Tutte, Chromatic polynomials, in Selected topics in graph theory, vol. 3, Academic Press, San Diego, CA, 1988, 15-42. 142 ·Zbl 0667.05022 |
[114] | G.-C. Rota, Combinatorial theory, old and new, in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, 1971, 229-233. 138 ·Zbl 0362.05044 |
[115] | G.-C. Rota and L. H. Harper, Matching theory, an introduction, in Advances in Probability and Related Topics, vol. 1, Dekker, New York, 1971, 169-215. 138 ·Zbl 0234.05001 |
[116] | A. Saumard and J. A. Wellner, Log-concavity and strong log-concavity: a review, Stat. Surv. 8 (2014), 45-114. 137 ·Zbl 1360.62055 |
[117] | R. Schneider, Convex bodies: the Brunn-Minkowski theory (second ed.), Cambridge Univ. Press, Cambridge, UK, 2014, 736 pp. 141 ·Zbl 1287.52001 |
[118] | A. Schrijver, Combinatorial optimization. Polyhedra and efficiency, vols. A-C, Springer, Berlin, 2003, 1881 pp. 61 ·Zbl 1041.90001 |
[119] | Y. Shenfeld and R. van Handel, Mixed volumes and the Bochner method, Proc. AMS 147 (2019), 5385-5402. 74, 85, 87, 141, 142, 143 ·Zbl 1457.52008 |
[120] | Y. Shenfeld and R. van Handel, The extremals of the Alexandrov-Fenchel inequality for convex polytopes, Acta Math. 231 (2023), 89-204. 70, 74, 142, 143, 144 ·Zbl 1529.05032 |
[121] | OEIS] N. J. A. Sloane, The online encyclopedia of integer sequences, oeis.org 65, 70 |
[122] | A. D. Sokal, The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, in Surveys in combinatorics, Cambridge Univ. Press, Cambridge, UK, 2005, 173-226. 139 ·Zbl 1110.05020 |
[123] | R. P. Stanley, Unimodal sequences arising from Lie algebras, in Lecture Notes in Pure and Applied Math. 57, Dekker, New York, 1980, 127-136. 138 ·Zbl 0451.05004 |
[124] | JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 ·Zbl 1547.05035 |
[125] | R. P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), 168-184. 138 ·Zbl 0502.05004 |
[126] | R. P. Stanley, Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Combin. Theory, Ser. A 31 (1981), 56-65. 69, 73, 74, 141 ·Zbl 0484.05012 |
[127] | R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, in Graph theory and its applications, New York Acad. Sci., New York, 1989, 500-535. 54, 137 |
[128] | R. P. Stanley, Enumerative Combinatorics, vol. 1 (second ed.) and vol. 2, Cambridge Univ. Press, 2012 and 1999. 140, 141 ·Zbl 0928.05001 |
[129] | R. P. Stanley, Promotion and evacuation, Electron. J. Combin. 16 (2009), no. 2, Paper 9, 24 pp. ·Zbl 1169.06002 |
[130] | D. Stanton, Unimodality and Young’s lattice, J. Combin. Theory, Ser. A 54 (1990), 41-53. 142 ·Zbl 0736.05009 |
[131] | J. R. Stembridge, Counterexamples to the poset conjectures of Neggers, Stanley, and Stembridge, Trans. AMS 359 (2007), 1115-1128. 142 ·Zbl 1110.06009 |
[132] | J. J. Sylvester, Proof of the hitherto undemonstrated Fundamental Theorem of Invariants, Philosophical Magazine 5 (1878), 178-188; available at tinyurl.com/c94pphj 137 ·JFM 10.0082.02 |
[133] | B. Teissier, Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem, in Seminar on Differential Geometry, Princeton Univ. Press, Princeton, NJ, 1982, 85-105. 141 ·Zbl 0494.52009 |
[134] | W. T. Trotter, Partially ordered sets, in Handbook of combinatorics, vol. 1, Elsevier, Amsterdam, 1995, 433-480. 141 ·Zbl 0841.06001 |
[135] | J. H. van Lint, The van der Waerden conjecture: two proofs in one year, Math. Intelligencer 4 (1982), no. 2, 72-77. 141 ·Zbl 0503.15009 |
[136] | D. J. A. Welsh, Matroid theory, Academic Press, London, 1976, 433 pp. 59, 139, 142 ·Zbl 0343.05002 |
[137] | D. J. A. Welsh, Complexity: knots, colourings and counting, Cambridge Univ. Press, Cambridge, UK, 1993, 163 pp. 145 ·Zbl 0799.68008 |
[138] | H. Weyl, Über die Starrheit der Eiflächen und konvexer Polyeder (in German), Berl. Ber. (1917), 250-266. 142 ·JFM 46.1115.02 |
[139] | D. B. Wilson, Generating random spanning trees more quickly than the cover time, in Proc. 28-th STOC, ACM, New York, 1996, 296-303. 140 ·Zbl 0946.60070 |
[140] | P. M. Winkler, Correlation and order, in Combinatorics and ordered sets, AMS, Providence, RI, 1986, 151-174. 141 ·Zbl 0598.06001 |
[141] | AUTHORS Swee Hong Chan Department of Mathematics, Rutgers University, New Brunswick, NJ, USA sweehong [dot] chan [at] rutgers [dot] edu https://sites.math.rutgers.edu/ sc2518 JOURNAL OF THE ASSOCIATION FOR MATHEMATICAL RESEARCH, 2(1):53-153, 2024 |