[1] | Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664, 1993 ·Zbl 0972.35521 |
[2] | Chen, M.; Hu, T.; Liu, Y., The integrable shallow-water models with cubic nonlinearity, J. Math. Fluid Mech., 24, 49, 2022, 31 pp. ·Zbl 1490.35303 |
[3] | Chen, M.; Liu, Y.; Zhang, S., Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion, Adv. Math., 272, 225-251, 2015 ·Zbl 1310.35044 |
[4] | Constantin, A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321-362, 2000 ·Zbl 0944.35062 |
[5] | Constantin, A.; Escher, J., Wave breaking for nonlocal shallow water equations, Acta Math., 181, 229-243, 1998 ·Zbl 0923.76025 |
[6] | Constantin, A.; Strauss, W., Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12, 415-422, 2002 ·Zbl 1022.35053 |
[7] | Fokas, A., The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39, 295-305, 1995 ·Zbl 0842.58045 |
[8] | Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations, Physica D, 95, 229-243, 1996 ·Zbl 0900.35345 |
[9] | Fuchssteiner, B.; Fokas, A., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4, 47-66, 1981 ·Zbl 1194.37114 |
[10] | Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry-I, J. Funct. Anal., 74, 160-197, 1987 ·Zbl 0656.35122 |
[11] | Gui, G.; Liu, Y.; Olver, P.; Qu, C., Wave-breaking and peakons for a modified Camassa-Holm equation, Commun. Math. Phys., 319, 731-759, 2013 ·Zbl 1263.35186 |
[12] | Lafortune, S.; Pelinovsky, D., Stability of smooth solitary waves in the b-Camassa-Holm equation, Physica D, 440, Article 133477 pp., 2022 ·Zbl 1506.35036 |
[13] | Li, J.; Liu, Y., Stability of solitary waves for the modified Camassa-Holm equation, Ann. PDE, 7, 14, 2021 ·Zbl 1483.35164 |
[14] | Li, J.; Liu, Y.; Wu, Q., Spectral stability of smooth solitary waves for the Degasperis-Procesi equation, J. Math. Pures Appl., 142, 298-314, 2020 ·Zbl 1448.35377 |
[15] | Li, J.; Liu, Y.; Wu, Q., Orbital stability of smooth solitary waves for the Degasperis-Procesi equation, Proc. Am. Math. Soc., 1, 151-160, 2023 ·Zbl 1501.35322 |
[16] | Li, J.; Liu, Y.; Wu, Q., Orbital stability of the sum of smooth solitons to the Degasperis-Procesi equation, J. Math. Pures Appl., 163, 204-231, 2022 ·Zbl 1491.35341 |
[17] | Li, Y.; Olver, P.; Rosenau, P., Non-analytic solutions of nonlinear wave models, (Grosser, M.; Hörmann, G.; Kunzinger, M.; Oberguggenberger, M., Nonlinear Theory of Generalized Functions. Nonlinear Theory of Generalized Functions, Research Notes in Mathematics, vol. 401, 1999, Chapman and Hall/CRC: Chapman and Hall/CRC New York), 129-145 ·Zbl 0940.35176 |
[18] | Matsuno, Y., Smooth and singular multisoliton solutions of a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion, J. Phys. A, 47, Article 125203 pp., 2014 ·Zbl 1292.35076 |
[19] | Olver, P.; Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53, 1900-1906, 1996 |
[20] | Qiao, Z., A new integrable equation with cuspons and w/m-shape-peaks solitons, J. Math. Phys., 47, Article 112701 pp., 2006 ·Zbl 1112.37063 |
[21] | Schaefer, T.; Wayne, C., Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D, 196, 90-105, 2004 ·Zbl 1054.81554 |
[22] | Vakhitov, N.; Kolokolov, A., Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron., 16, 783-789, 1973 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.