Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Orbital stability of smooth solitons for the modified Camassa-Holm equation.(English)Zbl 1546.35155

Summary: The modified Camassa-Holm equation with cubic nonlinearity is completely integrable and is considered a model for the unidirectional propagation of shallow-water waves. The localized smooth-wave solution exists uniquely, up to translation, within a certain range of the linear dispersive parameter. By constructing conserved \(H^1\) and \(L^1\) quantities in terms of the momentum variable \(m\), this study demonstrates that the smooth soliton, when regarded as a solution of the initial-value problem for the modified Camassa-Holm equation, is orbitally stable to perturbations in the Sobolev space \(H^3\). Furthermore, the global well-posedness of the solution is established for certain initial data in \(H^s\) with \(s \geq 3\).

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q51 Soliton equations
35C08 Soliton solutions
35B35 Stability in context of PDEs
76B25 Solitary waves for incompressible inviscid fluids
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Cite

References:

[1]Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664, 1993 ·Zbl 0972.35521
[2]Chen, M.; Hu, T.; Liu, Y., The integrable shallow-water models with cubic nonlinearity, J. Math. Fluid Mech., 24, 49, 2022, 31 pp. ·Zbl 1490.35303
[3]Chen, M.; Liu, Y.; Zhang, S., Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion, Adv. Math., 272, 225-251, 2015 ·Zbl 1310.35044
[4]Constantin, A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321-362, 2000 ·Zbl 0944.35062
[5]Constantin, A.; Escher, J., Wave breaking for nonlocal shallow water equations, Acta Math., 181, 229-243, 1998 ·Zbl 0923.76025
[6]Constantin, A.; Strauss, W., Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12, 415-422, 2002 ·Zbl 1022.35053
[7]Fokas, A., The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39, 295-305, 1995 ·Zbl 0842.58045
[8]Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations, Physica D, 95, 229-243, 1996 ·Zbl 0900.35345
[9]Fuchssteiner, B.; Fokas, A., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4, 47-66, 1981 ·Zbl 1194.37114
[10]Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry-I, J. Funct. Anal., 74, 160-197, 1987 ·Zbl 0656.35122
[11]Gui, G.; Liu, Y.; Olver, P.; Qu, C., Wave-breaking and peakons for a modified Camassa-Holm equation, Commun. Math. Phys., 319, 731-759, 2013 ·Zbl 1263.35186
[12]Lafortune, S.; Pelinovsky, D., Stability of smooth solitary waves in the b-Camassa-Holm equation, Physica D, 440, Article 133477 pp., 2022 ·Zbl 1506.35036
[13]Li, J.; Liu, Y., Stability of solitary waves for the modified Camassa-Holm equation, Ann. PDE, 7, 14, 2021 ·Zbl 1483.35164
[14]Li, J.; Liu, Y.; Wu, Q., Spectral stability of smooth solitary waves for the Degasperis-Procesi equation, J. Math. Pures Appl., 142, 298-314, 2020 ·Zbl 1448.35377
[15]Li, J.; Liu, Y.; Wu, Q., Orbital stability of smooth solitary waves for the Degasperis-Procesi equation, Proc. Am. Math. Soc., 1, 151-160, 2023 ·Zbl 1501.35322
[16]Li, J.; Liu, Y.; Wu, Q., Orbital stability of the sum of smooth solitons to the Degasperis-Procesi equation, J. Math. Pures Appl., 163, 204-231, 2022 ·Zbl 1491.35341
[17]Li, Y.; Olver, P.; Rosenau, P., Non-analytic solutions of nonlinear wave models, (Grosser, M.; Hörmann, G.; Kunzinger, M.; Oberguggenberger, M., Nonlinear Theory of Generalized Functions. Nonlinear Theory of Generalized Functions, Research Notes in Mathematics, vol. 401, 1999, Chapman and Hall/CRC: Chapman and Hall/CRC New York), 129-145 ·Zbl 0940.35176
[18]Matsuno, Y., Smooth and singular multisoliton solutions of a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion, J. Phys. A, 47, Article 125203 pp., 2014 ·Zbl 1292.35076
[19]Olver, P.; Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53, 1900-1906, 1996
[20]Qiao, Z., A new integrable equation with cuspons and w/m-shape-peaks solitons, J. Math. Phys., 47, Article 112701 pp., 2006 ·Zbl 1112.37063
[21]Schaefer, T.; Wayne, C., Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D, 196, 90-105, 2004 ·Zbl 1054.81554
[22]Vakhitov, N.; Kolokolov, A., Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron., 16, 783-789, 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp