[1] | Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 2, 151-218, 1975 ·Zbl 0315.47007 |
[2] | Artbazar, G.; Yajima, K., The \(L^p\)-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7, 221-240, 2000 ·Zbl 0976.34071 |
[3] | Beceanu, M., Structure of wave operators for a scaling-critical class of potentials, Am. J. Math., 136, 255-308, 2014 ·Zbl 1377.35209 |
[4] | Beceanu, M.; Schlag, W., Structure formulas for wave operators under a small scaling invariant condition, J. Spectr. Theory, 9, 3, 967-990, 2019 ·Zbl 1428.35254 |
[5] | Beceanu, M.; Schlag, W., Structure formulas for wave operators, Am. J. Math., 142, 751-807, 2020 ·Zbl 1445.35234 |
[6] | Ben-Artzi, M.; Koch, H.; Saut, J., Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris, Sér. I Math., 330, 1, 87-92, 2000 ·Zbl 0942.35160 |
[7] | Blunck, S., A Hörmander-type spectral multiplier theorem for operators without heat kernel, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 2, 449-459, 2003 ·Zbl 1170.42301 |
[8] | Chen, M.; Li, P.; Soffer, A.; Yao, X., Decay estimates for Beam equations with potential in dimension three ·Zbl 1552.35187 |
[9] | Cheng, H.; Huang, S.; Huang, T.; Zheng, Q., Pointwise estimates for the fundamental solution of higher order Schrödinger equation in odd dimensions |
[10] | Cornean, H. D.; Michelangeli, A.; Yajima, K., Two-dimensional Schrödinger operators with point interactions: threshold expansions, zero modes and \(L^p\)-boundedness of wave operators, Rev. Math. Phys., 31, Article 1950012 pp., 2019 ·Zbl 1423.35274 |
[11] | Cornean, H. D.; Michelangeli, A.; Yajima, K., Erratum: two-dimensional Schrödinger operators with point interactions: threshold expansions, zero modes and \(L^p\)-boundedness of wave operators, Rev. Math. Phys., 32, Article 2092001 pp., 2020 ·Zbl 1445.35262 |
[12] | Costin, O.; Soffer, A., Resonance theory for Schrödinger operators, Commun. Math. Phys., 224, 1, 133-152, 2001, Dedicated to Joel L. Lebowitz ·Zbl 0992.81025 |
[13] | Cuccagna, S., Stabilization of solutions to nonlinear Schrödinger equations, Commun. Pure Appl. Math., 54, 1110-1145, 2001 ·Zbl 1031.35129 |
[14] | Cuccagna, S., \( L^p\) continuity of wave operators in \(\mathbb{Z} \), J. Math. Anal. Appl., 354, 2, 594-605, 2009 ·Zbl 1177.39027 |
[15] | D’Ancona, P.; Fanelli, F., \( L^p\)-boundedness of the wave operator for the one dimensional Schrödinger operator, Commun. Math. Phys., 268, 2, 415-438, 2006 ·Zbl 1127.35053 |
[16] | Deift, P.; Trubowitz, E., Inverse scattering on the line, Commun. Pure Appl. Math., 33, 121-251, 1979 ·Zbl 0388.34005 |
[17] | Dell’Antonio, G.; Michelangeli, A.; Scandone, R.; Yajima, K., \( L^p\)-boundedness of wave operators for the three-dimensional multi-centre point interaction, Ann. Henri Poincaré, 19, 283-322, 2018 ·Zbl 1385.81045 |
[18] | Duchêne, V.; Marzuola, J.; Weinstein, M. I., Wave operator bounds for one-dimensional Schrödinger operators with singular potentials and applications, J. Math. Phys., 52, 1, Article 013505 pp., 2011 ·Zbl 1314.81085 |
[19] | Deng, Q.; Ding, Y.; Yao, X., Gaussian bounds for higher-order elliptic differential operators with Kato type potentials, J. Funct. Anal., 266, 8, 5377-5397, 2014 ·Zbl 1296.47037 |
[20] | Deng, Q.; Soffer, A.; Yao, X., Endpoint Strichartz estimates for charge transfer Hamiltonians, Indiana Univ. Math. J., 67, 6, 2487-2522, 2018 ·Zbl 1412.35281 |
[21] | Ding, Y.; Yao, X., \( H^p- H^q\) estimates for dispersive equations and related applications, J. Funct. Anal., 257, 2067-2087, 2009 ·Zbl 1178.47029 |
[22] | Erdoğan, M. B.; Goldberg, M.; Green, W. R., On the \(L^p\) boundedness of wave operators for two-dimensional Schrödinger operators with threshold obstructions, J. Funct. Anal., 274, 2139-2161, 2018 ·Zbl 1516.35132 |
[23] | Erdoğan, M. B.; Goldberg, M.; Green, W. R., Counterexamples to Lp boundedness of wave operators for classical and higher order Schrödinger operators, J. Funct. Anal., 285, Article 108789 pp., 2023 ·Zbl 1545.35039 |
[24] | Erdoğan, M. B.; Goldberg, M.; Green, W. R., Dispersive estimates for higher order Schrödinger operators with scaling-critical potentials |
[25] | Erdoğan, M. B.; Green, W. R., The \(L^p\)-continuity of wave operator for higher order Schrödinger operators, Adv. Math., 404, Article 108450 pp., 2022 ·Zbl 1540.35156 |
[26] | Erdoğan, M. B.; Green, W. R., A note on endpoint \(L^p\)-continuity of wave operators for classical and higher order Schrödinger operators, J. Differ. Equ., 355, 144-161, 2023 ·Zbl 1525.35084 |
[27] | Erdoğan, M. B.; Green, W. R.; Toprak, E., On the fourth order Schrödinger equation in three dimensions: dispersive estimates and zero energy resonance, J. Differ. Equ., 271, 152-185, 2021 ·Zbl 1455.35212 |
[28] | Fackler, S.; Hytönen, T. P.; Lindemulder, N., Weighted estimates for operator-valued Fourier multipliers, Collect. Math., 71, 3, 511-548, 2020 ·Zbl 1445.42005 |
[29] | Fefferman, C. L., Characterizations of bounded mean oscillation, Bull. Am. Math. Soc., 77, 587-588, 1971 ·Zbl 0229.46051 |
[30] | Feng, H.; Soffer, A.; Wu, Z.; Yao, X., Decay estimates for higher-order elliptic operators, Trans. Am. Math. Soc., 373, 4, 2805-2859, 2020 ·Zbl 1440.35054 |
[31] | Feng, H.; Soffer, A.; Yao, X., Decay estimates and Strichartz estimates of fourth-order Schrödinger operator, J. Funct. Anal., 274, 605-658, 2018 ·Zbl 1379.58013 |
[32] | Feng, H.; Wu, Z.; Yao, X., Time asymptotic expansions of solution for fourth-order Schrödinger equation with zero resonance or eigenvalue |
[33] | Finco, D.; Yajima, K., The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities. II. Even dimensional case, J. Math. Sci. Univ. Tokyo, 13, 3, 277-346, 2006 ·Zbl 1142.35060 |
[34] | Froese, R.; Herbst, I.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T., On the absence of positive eigenvalues for one-body Schrödinger operators, J. Anal. Math., 41, 272-284, 1982 ·Zbl 0512.35062 |
[35] | Galtbayar, A.; Yajima, K., The \(L^p\)-boundedness of wave operators for fourth order Schrödinger operators on \(\mathbb{R}^4\), J. Spectr. Theory, 14, 271-354, 2024 ·Zbl 1548.81115 |
[36] | M. Goldberg, Private communication. |
[37] | Goldberg, M.; Green, W. R., The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities, Adv. Math., 303, 360-389, 2016 ·Zbl 1351.35029 |
[38] | Goldberg, M.; Green, W. R., On the \(L^p\) boundedness of wave operators for four-dimensional Schrödinger operators with a threshold eigenvalue, Ann. Henri Poincaré, 18, 1269-1288, 2017 ·Zbl 1364.81223 |
[39] | Goldberg, M.; Green, W. R., \( L^p\) boundedness of the wave operators for fourth order Schrödinger operators, Trans. Am. Math. Soc., 374, 4075-4092, 2021 ·Zbl 07344659 |
[40] | Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, 2014, Springer: Springer New York ·Zbl 1304.42001 |
[41] | Grafakos, L., Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2014, Springer: Springer New York ·Zbl 1304.42002 |
[42] | Green, W. R.; Toprak, E., On the fourth order Schrödinger equation in four dimensions: dispersive estimates and zero energy resonance, J. Differ. Equ., 267, 3, 1899-1954, 2019 ·Zbl 1429.35059 |
[43] | Hill, T., Dispersive estimates of Schrödinger and Schrödinger-like equations in one dimension, 2020, University of Cincinnati, Thesis (Ph.D.) |
[44] | Hörmander, L., The Analysis of Linear Partial Differential Operators, vol. II: Differential Operators with Constant Coefficients, 2005, Springer: Springer Berlin ·Zbl 1062.35004 |
[45] | Hytönen, T. P., The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math. (2), 175, 1473-1506, 2012 ·Zbl 1250.42036 |
[46] | Ionescu, A. D.; Jerison, D., On the absence of positive eigenvalues of Schrödinger operators with rough potentials, Geom. Funct. Anal., 13, 5, 1029-1081, 2003 ·Zbl 1055.35098 |
[47] | Jensen, A., Space-time scattering for the Schrödinger equation, Ark. Mat., 36, 363-377, 1998 ·Zbl 1021.34069 |
[48] | Jensen, A.; Yajima, K., A remark on \(L^p\)-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 225, 3, 633-637, 2002 ·Zbl 1057.47011 |
[49] | Jensen, A.; Yajima, K., On \(L^p\) boundedness of wave operators for 4-dimensional Schrödinger operators with threshold singularities, Proc. Lond. Math. Soc. (3), 96, 1, 136-162, 2008 ·Zbl 1182.35089 |
[50] | Kato, T., Growth properties of solutions of the reduced wave equation with a variable coefficient, Commun. Pure Appl. Math., 12, 403-425, 1959 ·Zbl 0091.09502 |
[51] | Koch, H.; Tataru, D., Carleman estimates and absence of embedded eigenvalues, Commun. Math. Phys., 267, 2, 419-449, 2006 ·Zbl 1151.35025 |
[52] | Kuroda, S. T., Scattering theory for differential operators. I. Operator theory, J. Math. Soc. Jpn., 25, 75-104, 1973 ·Zbl 0245.47006 |
[53] | Kurtz, D. S., Littlewood-Paley and multiplier theorems on weighted \(L^p\) spaces, Trans. Am. Math. Soc., 259, 1, 235-254, 1980 ·Zbl 0436.42012 |
[54] | Lerner, A. K.; Ombrosi, S.; Pérez, C., \( A_1\) bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett., 16, 149-156, 2009 ·Zbl 1169.42006 |
[55] | Li, P.; Soffer, A.; Yao, X., Decay estimates for fourth-order Schrödinger operator in dimension two, J. Funct. Anal., 284, 6, Article 109816 pp., 2023 ·Zbl 1511.35137 |
[56] | Mizutani, H.; Wan, Z.; Yao, X., \( L^p\)-boundedness of wave operators for fourth order Schrödinger operators with zero resonances on \(\mathbb{R}^3\) |
[57] | Mizutani, H.; Wan, Z.; Yao, X., Counterexamples and weak \((1, 1)\) estimates of wave operators for fourth-order Schrödinger operators in dimension three ·Zbl 07957798 |
[58] | Mizutani, H.; Yao, X., Kato smoothing, Strichartz and uniform Sobolev estimates for fractional operators with sharp Hardy potentials, Commun. Math. Phys., 388, 1, 581-623, 2021 ·Zbl 1477.35047 |
[59] | Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II, IV, 1975, Academic Press: Academic Press New York-London, 1978 ·Zbl 0308.47002 |
[60] | Schlag, W., Dispersive estimates for Schrödinger operators: a survey, (Mathematical Aspects of Nonlinear Dispersive Equations. Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud., vol. 163, 2007, Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 255-285 ·Zbl 1143.35001 |
[61] | Schlag, W., On pointwise decay of waves, J. Math. Phys., 62, 6, Article 061509 pp., 2021 ·Zbl 1467.81039 |
[62] | Sikora, A.; Yan, L.; Yao, X., Spectral multipliers, Bochner-Riesz means and uniform Sobolev inequalities for elliptic operators, Int. Math. Res. Not., 10, 3070-3121, 2018 ·Zbl 1407.35006 |
[63] | Soffer, A.; Wu, X., \( L^p\) boundedness of the scattering wave operators of Schrödinger dynamics with time-dependent potentials and applications |
[64] | Soffer, A.; Wu, Z.; Yao, X., Decay estimates for bi-Schrödinger operators in dimension one, Ann. Henri Poincaré, 23, 2683-2744, 2022 ·Zbl 1505.35129 |
[65] | Stein, E. M., Interpolation of linear operators, Trans. Am. Math. Soc., 83, 482-492, 1956 ·Zbl 0072.32402 |
[66] | Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, 1993, Princeton University Press: Princeton University Press Princeton, NJ, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III ·Zbl 0821.42001 |
[67] | Weder, R., The \(W^{k , p}\)-continuity of the Schrödinger wave operators on the line, Commun. Math. Phys., 208, 507-520, 1999 ·Zbl 0945.34070 |
[68] | Weder, R., The \(L^p\) boundedness of the wave operators for matrix Schrödinger equations, J. Spectr. Theory, 12, 707-744, 2022 ·Zbl 1517.47075 |
[69] | Yajima, K., The \(W^{k , p}\)-continuity of wave operators for Schrödinger operators, J. Math. Soc. Jpn., 47, 551-581, 1995 ·Zbl 0837.35039 |
[70] | Yajima, K., \( L^p\)-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 208, 125-152, 1999 ·Zbl 0961.47004 |
[71] | Yajima, K., The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities I, Odd dimensional case, J. Math. Sci. Univ. Tokyo, 13, 43-93, 2006 ·Zbl 1115.35094 |
[72] | Yajima, K., Remarks on \(L^p\)-boundedness of wave operators for Schrödinger operators with threshold singularities, Doc. Math., 21, 391-443, 2016 ·Zbl 1339.35203 |
[73] | Yajima, K., \( L^1\) and \(L^\infty \)-boundedness of wave operators for three dimensional Schrödinger operators with threshold singularities, Tokyo J. Math., 41, 385-406, 2018 ·Zbl 1414.35022 |
[74] | Yajima, K., \( L^p\)-boundedness of wave operators for 2D Schrödinger operators with point interactions, Ann. Henri Poincaré, 22, 2065-2101, 2021 ·Zbl 1467.35121 |
[75] | Yajima, K., The \(L^p\)-boundedness of wave operators for two dimensional Schrödinger operators with threshold singularities, J. Math. Soc. Jpn., 74, 4, 1169-1217, 2022 ·Zbl 1523.35084 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.