Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

\(L^{p}\)-boundedness of wave operators for bi-Schrödinger operators on the line.(English)Zbl 1546.35048

Summary: This paper is devoted to establishing several types of \(L^{p}\)-boundedness of wave operators \(W_{\pm} = W_{\pm}(H, \mathrm{\Delta}^{2})\) associated with the bi-Schrödinger operators \(H = \mathrm{\Delta}^{2} + V(x)\) on the line \(\mathbb{R}\). Given suitable decay potentials \(V\), we firstly prove that the wave and dual wave operators are bounded on \(L^{p}(\mathbb{R})\) for all \(1 < p < \infty \):\[\| W_{\pm} f \|_{L^{p} (\mathbb{R})} + \| W_{\pm}^{\ast} f \|_{L^{p} (\mathbb{R})} \lesssim \| f \|_{L^{p} (\mathbb{R})},\]which are further extended to the \(L^{p}\)-boundedness on the weighted spaces \(L^{p}(\mathbb{R}, w)\) with general even \(A_{p}\)-weights \(w\) and to the boundedness on the Sobolev spaces \(W^{s, p} (\mathbb{R})\). For the limiting case, we prove that \(W_{\pm}\) are bounded from \(L^{1} (\mathbb{R})\) to \(L^{1, \infty} (\mathbb{R})\) as well as bounded from the Hardy space \(\mathcal{H}^{1} (\mathbb{R})\) to \(L^{1} (\mathbb{R})\). These results especially hold whatever the zero energy is a regular point or a resonance of \(H\). We also obtain that \(W_{\pm}\) are bounded from \(L^{\infty} (\mathbb{R})\) to \(\mathrm{BMO} (\mathbb{R})\) if zero is a regular point or a first kind resonance of \(H\). Next, we show that \(W_{\pm}\) are neither bounded on \(L^{1} (\mathbb{R})\) nor on \(L^{\infty} (\mathbb{R})\) even if zero is a regular point of \(H\). Moreover, if zero is a second kind resonance of \(H\), then \(W_{\pm}\) are shown to be even not bounded from \(L^{\infty} (\mathbb{R})\) to \(\mathrm{BMO} (\mathbb{R})\) in general. In particular, we remark that our results give a complete picture of the validity of \(L^{p}\)-boundedness of the wave operators for all \(1 \leq p \leq \infty\) in the regular case. Finally, as applications, we deduce the \(L^{p} - L^{q}\) decay estimates for the propagator \(e^{- itH} P_{\mathrm{ac}}(H)\) with pairs \((1/p, 1/q)\) belonging to a certain region of \(\mathbb{R}^{2}\), as well as establish the Hörmander-type \(L^{p}\)-boundedness theorem for the spectral multiplier \(f(H)\).

MSC:

35J30 Higher-order elliptic equations
31B30 Biharmonic and polyharmonic equations and functions in higher dimensions
35B65 Smoothness and regularity of solutions to PDEs

Cite

References:

[1]Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 2, 151-218, 1975 ·Zbl 0315.47007
[2]Artbazar, G.; Yajima, K., The \(L^p\)-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7, 221-240, 2000 ·Zbl 0976.34071
[3]Beceanu, M., Structure of wave operators for a scaling-critical class of potentials, Am. J. Math., 136, 255-308, 2014 ·Zbl 1377.35209
[4]Beceanu, M.; Schlag, W., Structure formulas for wave operators under a small scaling invariant condition, J. Spectr. Theory, 9, 3, 967-990, 2019 ·Zbl 1428.35254
[5]Beceanu, M.; Schlag, W., Structure formulas for wave operators, Am. J. Math., 142, 751-807, 2020 ·Zbl 1445.35234
[6]Ben-Artzi, M.; Koch, H.; Saut, J., Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris, Sér. I Math., 330, 1, 87-92, 2000 ·Zbl 0942.35160
[7]Blunck, S., A Hörmander-type spectral multiplier theorem for operators without heat kernel, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 2, 449-459, 2003 ·Zbl 1170.42301
[8]Chen, M.; Li, P.; Soffer, A.; Yao, X., Decay estimates for Beam equations with potential in dimension three ·Zbl 1552.35187
[9]Cheng, H.; Huang, S.; Huang, T.; Zheng, Q., Pointwise estimates for the fundamental solution of higher order Schrödinger equation in odd dimensions
[10]Cornean, H. D.; Michelangeli, A.; Yajima, K., Two-dimensional Schrödinger operators with point interactions: threshold expansions, zero modes and \(L^p\)-boundedness of wave operators, Rev. Math. Phys., 31, Article 1950012 pp., 2019 ·Zbl 1423.35274
[11]Cornean, H. D.; Michelangeli, A.; Yajima, K., Erratum: two-dimensional Schrödinger operators with point interactions: threshold expansions, zero modes and \(L^p\)-boundedness of wave operators, Rev. Math. Phys., 32, Article 2092001 pp., 2020 ·Zbl 1445.35262
[12]Costin, O.; Soffer, A., Resonance theory for Schrödinger operators, Commun. Math. Phys., 224, 1, 133-152, 2001, Dedicated to Joel L. Lebowitz ·Zbl 0992.81025
[13]Cuccagna, S., Stabilization of solutions to nonlinear Schrödinger equations, Commun. Pure Appl. Math., 54, 1110-1145, 2001 ·Zbl 1031.35129
[14]Cuccagna, S., \( L^p\) continuity of wave operators in \(\mathbb{Z} \), J. Math. Anal. Appl., 354, 2, 594-605, 2009 ·Zbl 1177.39027
[15]D’Ancona, P.; Fanelli, F., \( L^p\)-boundedness of the wave operator for the one dimensional Schrödinger operator, Commun. Math. Phys., 268, 2, 415-438, 2006 ·Zbl 1127.35053
[16]Deift, P.; Trubowitz, E., Inverse scattering on the line, Commun. Pure Appl. Math., 33, 121-251, 1979 ·Zbl 0388.34005
[17]Dell’Antonio, G.; Michelangeli, A.; Scandone, R.; Yajima, K., \( L^p\)-boundedness of wave operators for the three-dimensional multi-centre point interaction, Ann. Henri Poincaré, 19, 283-322, 2018 ·Zbl 1385.81045
[18]Duchêne, V.; Marzuola, J.; Weinstein, M. I., Wave operator bounds for one-dimensional Schrödinger operators with singular potentials and applications, J. Math. Phys., 52, 1, Article 013505 pp., 2011 ·Zbl 1314.81085
[19]Deng, Q.; Ding, Y.; Yao, X., Gaussian bounds for higher-order elliptic differential operators with Kato type potentials, J. Funct. Anal., 266, 8, 5377-5397, 2014 ·Zbl 1296.47037
[20]Deng, Q.; Soffer, A.; Yao, X., Endpoint Strichartz estimates for charge transfer Hamiltonians, Indiana Univ. Math. J., 67, 6, 2487-2522, 2018 ·Zbl 1412.35281
[21]Ding, Y.; Yao, X., \( H^p- H^q\) estimates for dispersive equations and related applications, J. Funct. Anal., 257, 2067-2087, 2009 ·Zbl 1178.47029
[22]Erdoğan, M. B.; Goldberg, M.; Green, W. R., On the \(L^p\) boundedness of wave operators for two-dimensional Schrödinger operators with threshold obstructions, J. Funct. Anal., 274, 2139-2161, 2018 ·Zbl 1516.35132
[23]Erdoğan, M. B.; Goldberg, M.; Green, W. R., Counterexamples to Lp boundedness of wave operators for classical and higher order Schrödinger operators, J. Funct. Anal., 285, Article 108789 pp., 2023 ·Zbl 1545.35039
[24]Erdoğan, M. B.; Goldberg, M.; Green, W. R., Dispersive estimates for higher order Schrödinger operators with scaling-critical potentials
[25]Erdoğan, M. B.; Green, W. R., The \(L^p\)-continuity of wave operator for higher order Schrödinger operators, Adv. Math., 404, Article 108450 pp., 2022 ·Zbl 1540.35156
[26]Erdoğan, M. B.; Green, W. R., A note on endpoint \(L^p\)-continuity of wave operators for classical and higher order Schrödinger operators, J. Differ. Equ., 355, 144-161, 2023 ·Zbl 1525.35084
[27]Erdoğan, M. B.; Green, W. R.; Toprak, E., On the fourth order Schrödinger equation in three dimensions: dispersive estimates and zero energy resonance, J. Differ. Equ., 271, 152-185, 2021 ·Zbl 1455.35212
[28]Fackler, S.; Hytönen, T. P.; Lindemulder, N., Weighted estimates for operator-valued Fourier multipliers, Collect. Math., 71, 3, 511-548, 2020 ·Zbl 1445.42005
[29]Fefferman, C. L., Characterizations of bounded mean oscillation, Bull. Am. Math. Soc., 77, 587-588, 1971 ·Zbl 0229.46051
[30]Feng, H.; Soffer, A.; Wu, Z.; Yao, X., Decay estimates for higher-order elliptic operators, Trans. Am. Math. Soc., 373, 4, 2805-2859, 2020 ·Zbl 1440.35054
[31]Feng, H.; Soffer, A.; Yao, X., Decay estimates and Strichartz estimates of fourth-order Schrödinger operator, J. Funct. Anal., 274, 605-658, 2018 ·Zbl 1379.58013
[32]Feng, H.; Wu, Z.; Yao, X., Time asymptotic expansions of solution for fourth-order Schrödinger equation with zero resonance or eigenvalue
[33]Finco, D.; Yajima, K., The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities. II. Even dimensional case, J. Math. Sci. Univ. Tokyo, 13, 3, 277-346, 2006 ·Zbl 1142.35060
[34]Froese, R.; Herbst, I.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T., On the absence of positive eigenvalues for one-body Schrödinger operators, J. Anal. Math., 41, 272-284, 1982 ·Zbl 0512.35062
[35]Galtbayar, A.; Yajima, K., The \(L^p\)-boundedness of wave operators for fourth order Schrödinger operators on \(\mathbb{R}^4\), J. Spectr. Theory, 14, 271-354, 2024 ·Zbl 1548.81115
[36]M. Goldberg, Private communication.
[37]Goldberg, M.; Green, W. R., The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities, Adv. Math., 303, 360-389, 2016 ·Zbl 1351.35029
[38]Goldberg, M.; Green, W. R., On the \(L^p\) boundedness of wave operators for four-dimensional Schrödinger operators with a threshold eigenvalue, Ann. Henri Poincaré, 18, 1269-1288, 2017 ·Zbl 1364.81223
[39]Goldberg, M.; Green, W. R., \( L^p\) boundedness of the wave operators for fourth order Schrödinger operators, Trans. Am. Math. Soc., 374, 4075-4092, 2021 ·Zbl 07344659
[40]Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, 2014, Springer: Springer New York ·Zbl 1304.42001
[41]Grafakos, L., Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2014, Springer: Springer New York ·Zbl 1304.42002
[42]Green, W. R.; Toprak, E., On the fourth order Schrödinger equation in four dimensions: dispersive estimates and zero energy resonance, J. Differ. Equ., 267, 3, 1899-1954, 2019 ·Zbl 1429.35059
[43]Hill, T., Dispersive estimates of Schrödinger and Schrödinger-like equations in one dimension, 2020, University of Cincinnati, Thesis (Ph.D.)
[44]Hörmander, L., The Analysis of Linear Partial Differential Operators, vol. II: Differential Operators with Constant Coefficients, 2005, Springer: Springer Berlin ·Zbl 1062.35004
[45]Hytönen, T. P., The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math. (2), 175, 1473-1506, 2012 ·Zbl 1250.42036
[46]Ionescu, A. D.; Jerison, D., On the absence of positive eigenvalues of Schrödinger operators with rough potentials, Geom. Funct. Anal., 13, 5, 1029-1081, 2003 ·Zbl 1055.35098
[47]Jensen, A., Space-time scattering for the Schrödinger equation, Ark. Mat., 36, 363-377, 1998 ·Zbl 1021.34069
[48]Jensen, A.; Yajima, K., A remark on \(L^p\)-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 225, 3, 633-637, 2002 ·Zbl 1057.47011
[49]Jensen, A.; Yajima, K., On \(L^p\) boundedness of wave operators for 4-dimensional Schrödinger operators with threshold singularities, Proc. Lond. Math. Soc. (3), 96, 1, 136-162, 2008 ·Zbl 1182.35089
[50]Kato, T., Growth properties of solutions of the reduced wave equation with a variable coefficient, Commun. Pure Appl. Math., 12, 403-425, 1959 ·Zbl 0091.09502
[51]Koch, H.; Tataru, D., Carleman estimates and absence of embedded eigenvalues, Commun. Math. Phys., 267, 2, 419-449, 2006 ·Zbl 1151.35025
[52]Kuroda, S. T., Scattering theory for differential operators. I. Operator theory, J. Math. Soc. Jpn., 25, 75-104, 1973 ·Zbl 0245.47006
[53]Kurtz, D. S., Littlewood-Paley and multiplier theorems on weighted \(L^p\) spaces, Trans. Am. Math. Soc., 259, 1, 235-254, 1980 ·Zbl 0436.42012
[54]Lerner, A. K.; Ombrosi, S.; Pérez, C., \( A_1\) bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett., 16, 149-156, 2009 ·Zbl 1169.42006
[55]Li, P.; Soffer, A.; Yao, X., Decay estimates for fourth-order Schrödinger operator in dimension two, J. Funct. Anal., 284, 6, Article 109816 pp., 2023 ·Zbl 1511.35137
[56]Mizutani, H.; Wan, Z.; Yao, X., \( L^p\)-boundedness of wave operators for fourth order Schrödinger operators with zero resonances on \(\mathbb{R}^3\)
[57]Mizutani, H.; Wan, Z.; Yao, X., Counterexamples and weak \((1, 1)\) estimates of wave operators for fourth-order Schrödinger operators in dimension three ·Zbl 07957798
[58]Mizutani, H.; Yao, X., Kato smoothing, Strichartz and uniform Sobolev estimates for fractional operators with sharp Hardy potentials, Commun. Math. Phys., 388, 1, 581-623, 2021 ·Zbl 1477.35047
[59]Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II, IV, 1975, Academic Press: Academic Press New York-London, 1978 ·Zbl 0308.47002
[60]Schlag, W., Dispersive estimates for Schrödinger operators: a survey, (Mathematical Aspects of Nonlinear Dispersive Equations. Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud., vol. 163, 2007, Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 255-285 ·Zbl 1143.35001
[61]Schlag, W., On pointwise decay of waves, J. Math. Phys., 62, 6, Article 061509 pp., 2021 ·Zbl 1467.81039
[62]Sikora, A.; Yan, L.; Yao, X., Spectral multipliers, Bochner-Riesz means and uniform Sobolev inequalities for elliptic operators, Int. Math. Res. Not., 10, 3070-3121, 2018 ·Zbl 1407.35006
[63]Soffer, A.; Wu, X., \( L^p\) boundedness of the scattering wave operators of Schrödinger dynamics with time-dependent potentials and applications
[64]Soffer, A.; Wu, Z.; Yao, X., Decay estimates for bi-Schrödinger operators in dimension one, Ann. Henri Poincaré, 23, 2683-2744, 2022 ·Zbl 1505.35129
[65]Stein, E. M., Interpolation of linear operators, Trans. Am. Math. Soc., 83, 482-492, 1956 ·Zbl 0072.32402
[66]Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, 1993, Princeton University Press: Princeton University Press Princeton, NJ, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III ·Zbl 0821.42001
[67]Weder, R., The \(W^{k , p}\)-continuity of the Schrödinger wave operators on the line, Commun. Math. Phys., 208, 507-520, 1999 ·Zbl 0945.34070
[68]Weder, R., The \(L^p\) boundedness of the wave operators for matrix Schrödinger equations, J. Spectr. Theory, 12, 707-744, 2022 ·Zbl 1517.47075
[69]Yajima, K., The \(W^{k , p}\)-continuity of wave operators for Schrödinger operators, J. Math. Soc. Jpn., 47, 551-581, 1995 ·Zbl 0837.35039
[70]Yajima, K., \( L^p\)-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 208, 125-152, 1999 ·Zbl 0961.47004
[71]Yajima, K., The \(L^p\) boundedness of wave operators for Schrödinger operators with threshold singularities I, Odd dimensional case, J. Math. Sci. Univ. Tokyo, 13, 43-93, 2006 ·Zbl 1115.35094
[72]Yajima, K., Remarks on \(L^p\)-boundedness of wave operators for Schrödinger operators with threshold singularities, Doc. Math., 21, 391-443, 2016 ·Zbl 1339.35203
[73]Yajima, K., \( L^1\) and \(L^\infty \)-boundedness of wave operators for three dimensional Schrödinger operators with threshold singularities, Tokyo J. Math., 41, 385-406, 2018 ·Zbl 1414.35022
[74]Yajima, K., \( L^p\)-boundedness of wave operators for 2D Schrödinger operators with point interactions, Ann. Henri Poincaré, 22, 2065-2101, 2021 ·Zbl 1467.35121
[75]Yajima, K., The \(L^p\)-boundedness of wave operators for two dimensional Schrödinger operators with threshold singularities, J. Math. Soc. Jpn., 74, 4, 1169-1217, 2022 ·Zbl 1523.35084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp