Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Koszul duality, minimal model and \(L_\infty \)-structure for differential algebras with weight.(English)Zbl 1544.18025

Summary: A differential algebra with weight is an abstraction of both the derivation (weight zero) and the forward and backward difference operators (weight \(\pm 1\)). In [Georgian Math. J. 17, No. 2, 347–372 (2010;Zbl 1237.18007)]J.-L. Loday established the Koszul duality for the operad of differential algebras of weight zero. He did not treat the case of nonzero weight, noting that new techniques are needed since the operad is no longer quadratic. This paper continues Loday’s work and establishes the Koszul duality in the case of nonzero weight. In the process, the minimal model and the Koszul dual homotopy cooperad of the operad governing differential algebras with weight are determined. As a consequence, a notion of homotopy differential algebras with weight is obtained and the deformation complex as well as its \(L_\infty \)-algebra structure for differential algebras with weight are deduced.

MSC:

18M70 Algebraic operads, cooperads, and Koszul duality
12H05 Differential algebra
18M65 Non-symmetric operads, multicategories, generalized multicategories
12H10 Difference algebra
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
16S80 Deformations of associative rings
18M60 Operads (general)

Citations:

Zbl 1237.18007

Cite

References:

[1]Araki, T.; Takashima, T.; Watamura, S., Instantons in non(anti)commutative gauge theory via deformed ADHM construction, 253-269 ·Zbl 1136.81407
[2]Bai, C.; Bai, R.; Guo, L.; Wu, Y., Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras. J. Algebra, 535-566 (2023) ·Zbl 1530.17022
[3]Blute, R. F.; Cockett, J. R.B.; Lemay, J.-S. P.; Seely, R. A.G., Differential categories revisited. Appl. Categ. Struct., 171-235 (2020) ·Zbl 1465.18011
[4]Bremner, M. R.; Dotsenko, V., Algebraic Operads. An Algorithmic Companion (2016), CRC Press ·Zbl 1350.18001
[5]Cockett, J. R.B.; Lemay, J.-S., Integral categories and calculus categories. Math. Struct. Comput. Sci., 243-308 (2019) ·Zbl 1408.18012
[6]Connes, A.; Marcolli, M., Noncommutative Geometry, Quantum Fields and Motives (2019), Amer. Math. Soc.
[7]Dotsenko, V.; Poncin, N., A tale of three homotopies. Appl. Categ. Struct., 845-873 (2016) ·Zbl 1375.18076
[8]Doubek, M.; Lada, T., Homotopy derivations. J. Homotopy Relat. Struct., 599-630 (2016) ·Zbl 1360.18015
[9]Drummond-Cole, G.; Vallette, B., The minimal model for the Batalin-Vilkovisky operad. Sel. Math., 1-47 (2013) ·Zbl 1264.18010
[10]Freitag, J.; Li, W.; Scanlon, T., Differential Chow varieties exist. J. Lond. Math. Soc., 128-156 (2017) ·Zbl 1439.14027
[11]Gelfand, I. M.; Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl., 248-262 (1979) ·Zbl 0437.58009
[12]Gerstenhaber, M., The cohomology structure of an associative ring. Ann. Math., 267-288 (1963) ·Zbl 0131.27302
[13]Gerstenhaber, M., On the deformation of rings and algebras. Ann. Math., 59-103 (1964) ·Zbl 0123.03101
[14]Gerstenhaber, M.; Voronov, A., Homotopy G-algebras and moduli space operad. Int. Math. Res. Not., 141-153 (1995) ·Zbl 0827.18004
[15]Getzler, E., Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology. Isr. Math. Conf. Proc., 65-78 (1993) ·Zbl 0844.18007
[16]Getzler, E., Lie theory for nilpotent \(L_\infty \)-algebras. Ann. Math., 271-301 (2009) ·Zbl 1246.17025
[17]E. Getzler, D.S.J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, arXiv:9403055.
[18]Ginzburg, V.; Kapranov, M., Koszul duality for operads. Duke Math. J., 203-272 (1994) ·Zbl 0855.18006
[19]Guo, L.; Keigher, W., On differential Rota-Baxter algebras. J. Pure Appl. Algebra, 522-540 (2008) ·Zbl 1185.16038
[20]Guo, L.; Li, F., Structure of Hochschild cohomology of path algebras and differential formulation of Euler’s polyhedron formula. Asian J. Math., 545-572 (2014) ·Zbl 1322.16005
[21]Guo, L.; Li, Y.; Sheng, Y.; Zhou, G., Cohomologies, extensions and deformations of differential algebras with arbitrary weight. Theory Appl. Categ., 1409-1433 (2022) ·Zbl 1517.16007
[22]Hong, Y.; Bai, C.; Guo, L., Infinite-dimensional Lie bialgebras via affinization of Novikov bialgebras and Koszul duality. Commun. Math. Phys., 2011-2049 (2023) ·Zbl 1542.17044
[23]Kajiura, H.; Stasheff, J., Homotopy algebras inspired by classical open-closed string field theory. Commun. Math. Phys., 553-581 (2006) ·Zbl 1125.18012
[24]Kaplansky, I., An Introduction to Differential Algebra (1976), Hermann
[25]Kolchin, E. R., Differential Algebras and Algebraic Groups (1973), Academic Press: Academic Press New York ·Zbl 0264.12102
[26]Kolesnikov, P. S.; Sartayev, B.; Orazgaliev, A., Gelfand-Dorfman algebras, derived identities, and the Manin product of operads. J. Algebra, 260-284 (2019) ·Zbl 1448.17023
[27]Kontsevich, M.; Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon). Math. Phys. Stud., 255-307 (2000) ·Zbl 0972.18005
[28]Lada, T.; Stasheff, J., Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys., 2, 1087-1103 (1993) ·Zbl 0824.17024
[29]Lada, T.; Markl, M., Strongly homotopy Lie algebras. Commun. Algebra, 2147-2161 (1995) ·Zbl 0999.17019
[30]Lada, T.; Tolley, M., Derivations of homotopy algebras. Arch. Math., 309-315 (2013) ·Zbl 1313.18017
[31]Lazarev, A.; Sheng, Y.; Tang, R., Deformations and homotopy theory of relative Rota-Baxter Lie algebras. Commun. Math. Phys., 595-631 (2021) ·Zbl 1476.17010
[32]Pacaud Lemay, J. S., Differential algebras in codifferential categories. J. Pure Appl. Algebra, 4191-4225 (2019) ·Zbl 1420.18019
[33]Liu, G.; Bai, C., Anti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebras. J. Algebra, 337-379 (2022) ·Zbl 1522.17008
[34]Loday, J.-L., On the operad of associative algebras with derivation. Georgian Math. J., 347-372 (2010) ·Zbl 1237.18007
[35]Loday, J.-L.; Vallette, B., Algebraic Operads (2012), Springer ·Zbl 1260.18001
[36]Lurie, J., DAG X: formal moduli problems
[37]Magid, A. R., Lectures on Differential Galois Theory (1994), Amer. Math. Soc. ·Zbl 0855.12001
[38]Pei, Y.; Sheng, Y.; Tang, R.; Zhao, K., Actions of monoidal categories and representations of Cartan type Lie algebras. J. Inst. Math. Jussieu (2022)
[39]Markl, M., Cotangent cohomology of a category and deformations. J. Pure Appl. Algebra, 195-218 (1996) ·Zbl 0865.18011
[40]Markl, M., Operads and PROPs, Handbook of Algebra. 5, 87-140 (2008), Elsevier/North-Holland ·Zbl 1211.18007
[41]Markl, M.; Shnider, S.; Stasheff, J. D., Operads in Algebra, Topology and Physics (2002), Amer Math Soc. ·Zbl 1017.18001
[42]Medvedev, A.; Scanlon, T., Invariant varieties for polynomial dynamical systems. Ann. Math., 81-177 (2014) ·Zbl 1347.37145
[43]Merkulov, S.; Vallette, B., Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math., 51-106 (2009) ·Zbl 1187.18006
[44]Merkulov, S.; Vallette, B., Deformation theory of representations of prop(erad)s. II. J. Reine Angew. Math., 123-174 (2009) ·Zbl 1191.18003
[45]Nijenhuis, A.; Richardson, R., Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc., 1-29 (1966) ·Zbl 0136.30502
[46]Poinsot, L., Differential (monoid) algebra and more, 164-189 ·Zbl 1375.12001
[47]Poinsot, L., Differential (Lie) algebras from a functorial point of view. Adv. Appl. Math., 38-76 (2016) ·Zbl 1395.17041
[48]Pridham, J. P., Unifying derived deformation theories. Adv. Math., 772-826 (2010) ·Zbl 1195.14012
[49]Van der Put, M.; Singer, M., Galois Theory of Linear Differential Equations (2003), Springer ·Zbl 1036.12008
[50]Ritt, J. F., Differential Equations from the Algebraic Standpoint (1934), Amer. Math. Soc.
[51]Stasheff, J., Homotopy associativity of H-spaces I. Trans. Am. Math. Soc., 275-292 (1963) ·Zbl 0114.39402
[52]Stasheff, J., Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, 120-137 ·Zbl 0758.17010
[53]Tang, R.; Bai, C.; Guo, L.; Sheng, Y., Deformations and their controlling cohomologies of \(O\)-operators. Commun. Math. Phys., 665-700 (2019) ·Zbl 1440.17015
[54]Tang, R.; Frégier, Y.; Sheng, Y., Cohomologies of a Lie algebra with a derivation and applications. J. Algebra, 65-99 (2019) ·Zbl 1455.17020
[55]P. Van der Laan, Operads up to homotopy and deformations of operad maps, arXiv:0208041.
[56]P. Van der Laan, Coloured Koszul duality and strongly homotopy operads, arXiv:0312147.
[57]Wu, W.-T., A constructive theory of differential algebraic geometry based on works of J. F. Ritt with particular applications to mechanical theorem-proving of differential geometries, 173-189 ·Zbl 0673.03006
[58]Xu, X., Novikov-Poisson algebras. J. Algebra, 253-279 (1997) ·Zbl 0872.17030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp