[1] | Araki, T.; Takashima, T.; Watamura, S., Instantons in non(anti)commutative gauge theory via deformed ADHM construction, 253-269 ·Zbl 1136.81407 |
[2] | Bai, C.; Bai, R.; Guo, L.; Wu, Y., Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras. J. Algebra, 535-566 (2023) ·Zbl 1530.17022 |
[3] | Blute, R. F.; Cockett, J. R.B.; Lemay, J.-S. P.; Seely, R. A.G., Differential categories revisited. Appl. Categ. Struct., 171-235 (2020) ·Zbl 1465.18011 |
[4] | Bremner, M. R.; Dotsenko, V., Algebraic Operads. An Algorithmic Companion (2016), CRC Press ·Zbl 1350.18001 |
[5] | Cockett, J. R.B.; Lemay, J.-S., Integral categories and calculus categories. Math. Struct. Comput. Sci., 243-308 (2019) ·Zbl 1408.18012 |
[6] | Connes, A.; Marcolli, M., Noncommutative Geometry, Quantum Fields and Motives (2019), Amer. Math. Soc. |
[7] | Dotsenko, V.; Poncin, N., A tale of three homotopies. Appl. Categ. Struct., 845-873 (2016) ·Zbl 1375.18076 |
[8] | Doubek, M.; Lada, T., Homotopy derivations. J. Homotopy Relat. Struct., 599-630 (2016) ·Zbl 1360.18015 |
[9] | Drummond-Cole, G.; Vallette, B., The minimal model for the Batalin-Vilkovisky operad. Sel. Math., 1-47 (2013) ·Zbl 1264.18010 |
[10] | Freitag, J.; Li, W.; Scanlon, T., Differential Chow varieties exist. J. Lond. Math. Soc., 128-156 (2017) ·Zbl 1439.14027 |
[11] | Gelfand, I. M.; Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl., 248-262 (1979) ·Zbl 0437.58009 |
[12] | Gerstenhaber, M., The cohomology structure of an associative ring. Ann. Math., 267-288 (1963) ·Zbl 0131.27302 |
[13] | Gerstenhaber, M., On the deformation of rings and algebras. Ann. Math., 59-103 (1964) ·Zbl 0123.03101 |
[14] | Gerstenhaber, M.; Voronov, A., Homotopy G-algebras and moduli space operad. Int. Math. Res. Not., 141-153 (1995) ·Zbl 0827.18004 |
[15] | Getzler, E., Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology. Isr. Math. Conf. Proc., 65-78 (1993) ·Zbl 0844.18007 |
[16] | Getzler, E., Lie theory for nilpotent \(L_\infty \)-algebras. Ann. Math., 271-301 (2009) ·Zbl 1246.17025 |
[17] | E. Getzler, D.S.J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, arXiv:9403055. |
[18] | Ginzburg, V.; Kapranov, M., Koszul duality for operads. Duke Math. J., 203-272 (1994) ·Zbl 0855.18006 |
[19] | Guo, L.; Keigher, W., On differential Rota-Baxter algebras. J. Pure Appl. Algebra, 522-540 (2008) ·Zbl 1185.16038 |
[20] | Guo, L.; Li, F., Structure of Hochschild cohomology of path algebras and differential formulation of Euler’s polyhedron formula. Asian J. Math., 545-572 (2014) ·Zbl 1322.16005 |
[21] | Guo, L.; Li, Y.; Sheng, Y.; Zhou, G., Cohomologies, extensions and deformations of differential algebras with arbitrary weight. Theory Appl. Categ., 1409-1433 (2022) ·Zbl 1517.16007 |
[22] | Hong, Y.; Bai, C.; Guo, L., Infinite-dimensional Lie bialgebras via affinization of Novikov bialgebras and Koszul duality. Commun. Math. Phys., 2011-2049 (2023) ·Zbl 1542.17044 |
[23] | Kajiura, H.; Stasheff, J., Homotopy algebras inspired by classical open-closed string field theory. Commun. Math. Phys., 553-581 (2006) ·Zbl 1125.18012 |
[24] | Kaplansky, I., An Introduction to Differential Algebra (1976), Hermann |
[25] | Kolchin, E. R., Differential Algebras and Algebraic Groups (1973), Academic Press: Academic Press New York ·Zbl 0264.12102 |
[26] | Kolesnikov, P. S.; Sartayev, B.; Orazgaliev, A., Gelfand-Dorfman algebras, derived identities, and the Manin product of operads. J. Algebra, 260-284 (2019) ·Zbl 1448.17023 |
[27] | Kontsevich, M.; Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon). Math. Phys. Stud., 255-307 (2000) ·Zbl 0972.18005 |
[28] | Lada, T.; Stasheff, J., Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys., 2, 1087-1103 (1993) ·Zbl 0824.17024 |
[29] | Lada, T.; Markl, M., Strongly homotopy Lie algebras. Commun. Algebra, 2147-2161 (1995) ·Zbl 0999.17019 |
[30] | Lada, T.; Tolley, M., Derivations of homotopy algebras. Arch. Math., 309-315 (2013) ·Zbl 1313.18017 |
[31] | Lazarev, A.; Sheng, Y.; Tang, R., Deformations and homotopy theory of relative Rota-Baxter Lie algebras. Commun. Math. Phys., 595-631 (2021) ·Zbl 1476.17010 |
[32] | Pacaud Lemay, J. S., Differential algebras in codifferential categories. J. Pure Appl. Algebra, 4191-4225 (2019) ·Zbl 1420.18019 |
[33] | Liu, G.; Bai, C., Anti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebras. J. Algebra, 337-379 (2022) ·Zbl 1522.17008 |
[34] | Loday, J.-L., On the operad of associative algebras with derivation. Georgian Math. J., 347-372 (2010) ·Zbl 1237.18007 |
[35] | Loday, J.-L.; Vallette, B., Algebraic Operads (2012), Springer ·Zbl 1260.18001 |
[36] | Lurie, J., DAG X: formal moduli problems |
[37] | Magid, A. R., Lectures on Differential Galois Theory (1994), Amer. Math. Soc. ·Zbl 0855.12001 |
[38] | Pei, Y.; Sheng, Y.; Tang, R.; Zhao, K., Actions of monoidal categories and representations of Cartan type Lie algebras. J. Inst. Math. Jussieu (2022) |
[39] | Markl, M., Cotangent cohomology of a category and deformations. J. Pure Appl. Algebra, 195-218 (1996) ·Zbl 0865.18011 |
[40] | Markl, M., Operads and PROPs, Handbook of Algebra. 5, 87-140 (2008), Elsevier/North-Holland ·Zbl 1211.18007 |
[41] | Markl, M.; Shnider, S.; Stasheff, J. D., Operads in Algebra, Topology and Physics (2002), Amer Math Soc. ·Zbl 1017.18001 |
[42] | Medvedev, A.; Scanlon, T., Invariant varieties for polynomial dynamical systems. Ann. Math., 81-177 (2014) ·Zbl 1347.37145 |
[43] | Merkulov, S.; Vallette, B., Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math., 51-106 (2009) ·Zbl 1187.18006 |
[44] | Merkulov, S.; Vallette, B., Deformation theory of representations of prop(erad)s. II. J. Reine Angew. Math., 123-174 (2009) ·Zbl 1191.18003 |
[45] | Nijenhuis, A.; Richardson, R., Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc., 1-29 (1966) ·Zbl 0136.30502 |
[46] | Poinsot, L., Differential (monoid) algebra and more, 164-189 ·Zbl 1375.12001 |
[47] | Poinsot, L., Differential (Lie) algebras from a functorial point of view. Adv. Appl. Math., 38-76 (2016) ·Zbl 1395.17041 |
[48] | Pridham, J. P., Unifying derived deformation theories. Adv. Math., 772-826 (2010) ·Zbl 1195.14012 |
[49] | Van der Put, M.; Singer, M., Galois Theory of Linear Differential Equations (2003), Springer ·Zbl 1036.12008 |
[50] | Ritt, J. F., Differential Equations from the Algebraic Standpoint (1934), Amer. Math. Soc. |
[51] | Stasheff, J., Homotopy associativity of H-spaces I. Trans. Am. Math. Soc., 275-292 (1963) ·Zbl 0114.39402 |
[52] | Stasheff, J., Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, 120-137 ·Zbl 0758.17010 |
[53] | Tang, R.; Bai, C.; Guo, L.; Sheng, Y., Deformations and their controlling cohomologies of \(O\)-operators. Commun. Math. Phys., 665-700 (2019) ·Zbl 1440.17015 |
[54] | Tang, R.; Frégier, Y.; Sheng, Y., Cohomologies of a Lie algebra with a derivation and applications. J. Algebra, 65-99 (2019) ·Zbl 1455.17020 |
[55] | P. Van der Laan, Operads up to homotopy and deformations of operad maps, arXiv:0208041. |
[56] | P. Van der Laan, Coloured Koszul duality and strongly homotopy operads, arXiv:0312147. |
[57] | Wu, W.-T., A constructive theory of differential algebraic geometry based on works of J. F. Ritt with particular applications to mechanical theorem-proving of differential geometries, 173-189 ·Zbl 0673.03006 |
[58] | Xu, X., Novikov-Poisson algebras. J. Algebra, 253-279 (1997) ·Zbl 0872.17030 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.