Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Marked relative invariants and GW/PT correspondences.(English)Zbl 1544.14054

This paper proves the conjectural Gromov-Witten/Pandharipande-Thomas (GW/PT) correspondence, in the form stated byR. Pandharipande andA. Pixton [Geom. Topol. 18, No. 5, 2747–2821 (2014;Zbl 1342.14114)], for Fano complete intersections with arbitrary (not necessarily of even degree) cohomology insertions, and for the relative reduced theories of \(K3\times \text{curve}\) with some restrictions on the curve class. The former case is done inductively by a simple degeneration to lower-degree complete intersections. The latter case is done by reduction to the case of capped descendent invariants of \(K3\times \mathbb{P}^1\) relative to \(K3\times \{\infty\}\), monodromy arguments (of the \(K3\) surface), and finally a simple degeneration to two rational elliptic surfaces glued along an elliptic curve. The relevant GW/PT correspondences in the resulting base cases were proved in [R. Pandharipande andA. Pixton, J. Am. Math. Soc. 30, No. 2, 389–449 (2017;Zbl 1360.14134)].
For these arguments to work, the author generalizes the notion of relative PT stable pairs [J. Li andB. Wu, Commun. Anal. Geom. 23, No. 4, 841–921 (2015;Zbl 1349.14014)] to allow for markings, and provides detailed and fairly self-contained proofs (with references when they are identical to existing work) of its fundamental properties, in particular that marked relative PT invariants satisfy the same degeneration and splitting formulas as marked relative GW invariants. A generalization of the conjectural GW/PT correspondence to marked invariants, including an explicit descendent transformation, is stated and proved to be compatible with degeneration and splitting, and, in the case of \(K3\times \text{curve}\), multiple cover formulas.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14J28 \(K3\) surfaces and Enriques surfaces

Cite

References:

[1]Abramovich, D.; Cadman, C.; Fantechi, B.; Wise, J., Expanded degenerations and pairs, Commun. Algebra, 41, 6, 2346-2386 (2013) ·Zbl 1326.14020
[2]Abramovich, D.; Fantechi, B., Configurations of points on degenerate varieties and properness of moduli spaces, Rend. Semin. Mat. Univ. Padova, 137, 1-17 (2017) ·Zbl 1388.14040
[3]Argüz, H.; Bousseau, P.; Pandharipande, R.; Zvonkine, D., Gromov-Witten theory of complete intersections via nodal invariants, J. Topol., 16, 1, 264-343 (2023) ·Zbl 1525.14068
[4]Bae, Y.; Buelles, T.-H., Curves on K3 surfaces in divisibility 2, Forum Math. Sigma, 9, Article e9 pp. (2021), 37 pp. ·Zbl 1468.14094
[5]Baltes, J., On Noether-Lefschetz Theory on Compactifications of the Moduli Space of K3 Surfaces (2020), University of Bonn, Master Thesis
[6]Bryan, J.; Leung, N.-C., The enumerative geometry of K3 surfaces and modular forms, J. Am. Math. Soc., 13, 2, 371-410 (2000) ·Zbl 0963.14031
[7]Bryan, J.; Pandharipande, R., The local Gromov-Witten theory of curves, J. Am. Math. Soc., 21, 1, 101-136 (2008), With an appendix by Bryan, C. Faber, A. Okounkov and Pandharipande ·Zbl 1126.14062
[8]Chen, Q., Stable logarithmic maps to Deligne-Faltings pairs I, Ann. Math. (2), 180, 2, 455-521 (2014) ·Zbl 1311.14028
[9]de Cataldo, M. A.; Migliorini, L., The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra, 251, 2, 824-848 (2002) ·Zbl 1033.14004
[10]Deligne, P., La conjecture de Weil. II, Publ. Math. Inst. Hautes Études Sci., 52, 137-252 (1980), (French) [Weil’s conjecture. II] ·Zbl 0456.14014
[11]Deligne, P.; Katz, N., Groupes des Monodromie en Géométrie Algébrique (SGA VII, 2), Lect. Notes Math., vol. 340 (1973)
[12]Fulton, W., Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2 (1998), Springer-Verlag: Springer-Verlag Berlin, xiv+470 pp. ·Zbl 0885.14002
[13]Graber, T.; Pandharipande, R., Localization of virtual classes, Invent. Math., 135, 2, 487-518 (1999) ·Zbl 0953.14035
[14]Graber, T.; Vakil, R., Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., 130, 1, 1-37 (2005) ·Zbl 1088.14007
[15]Greer, F., Quasi-modular forms from mixed Noether-Lefschetz theory, Adv. Math., 355, Article 106765 pp. (2019), 25 pp. ·Zbl 1440.14254
[16]Gross, M.; Siebert, B., Logarithmic Gromov-Witten invariants, J. Am. Math. Soc., 26, 2, 451-510 (2013) ·Zbl 1281.14044
[17]Hassett, B., Moduli spaces of weighted pointed stable curves, Adv. Math., 173, 2, 316-352 (2003) ·Zbl 1072.14014
[18]Huybrechts, D., Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics, vol. 158 (2016), Cambridge University Press: Cambridge University Press Cambridge, xi+485 pp. ·Zbl 1360.14099
[19]Huybrechts, D.; Thomas, R. P., Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann., 346, 3, 545-569 (2010) ·Zbl 1186.14014
[20]Kiem, Y.-H.; Li, J., Localizing virtual cycles by cosections, J. Am. Math. Soc., 26, 4, 1025-1050 (2013) ·Zbl 1276.14083
[21]Kim, B.; Sato, F., A generalization of Fulton-MacPherson configuration spaces, Sel. Math. New Ser., 15, 3, 435-443 (2009) ·Zbl 1177.14029
[22]Kool, M.; Thomas, R., Reduced classes and curve counting on surfaces I: theory, Algebr. Geom., 1, 3, 334-383 (2014) ·Zbl 1322.14085
[23]Lee, Y.-P.; Qu, F., A product formula for log Gromov-Witten invariants, J. Math. Soc. Jpn., 70, 1, 229-242 (2018) ·Zbl 1400.14140
[24]Li, J.; Wu, B., Good degeneration of Quot-schemes and coherent systems, Commun. Anal. Geom., 23, 4, 841-921 (2015) ·Zbl 1349.14014
[25]Li, J., Jun Stable morphisms to singular schemes and relative stable morphisms, J. Differ. Geom., 57, 3, 509-578 (2001) ·Zbl 1076.14540
[26]Li, J., A degeneration formula of GW-invariants, J. Differ. Geom., 60, 2, 199-293 (2002) ·Zbl 1063.14069
[27]Li, J., Lecture Notes on Relative GW-Invariants. Intersection Theory and Moduli, ICTP Lect. Notes, vol. XIX, 41-96 (2004), Abdus Salam Int. Cent. Theoret. Phys.: Abdus Salam Int. Cent. Theoret. Phys. Trieste ·Zbl 1092.14067
[28]Liu, H., Quasimaps and stable pairs, Forum Math. Sigma, 9, 42 (2021), Id/No e32 ·Zbl 1466.14061
[29]Losev, A.; Manin, Y., New moduli spaces of pointed curves and pencils of flat connections. Dedicated to William Fulton on the occasion of his 60th birthday, Mich. Math. J., 48, 443-472 (2000) ·Zbl 1078.14536
[30]Maulik, D., Gromov-Witten theory of \(A_n\)-resolutions, Geom. Topol., 13, 1729-1773 (2009) ·Zbl 1184.14085
[31]Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142, 5, 1263-1285 (2006) ·Zbl 1108.14046
[32]Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math., 142, 5, 1286-1304 (2006) ·Zbl 1108.14047
[33]Maulik, D.; Oblomkov, A., Donaldson-Thomas theory of \(A_n \times \mathbb{P}^1\), Compos. Math., 145, 5, 1249-1276 (2009) ·Zbl 1188.14036
[34]Maulik, D.; Oblomkov, A., Quantum cohomology of the Hilbert scheme of points on \(A_n\)-resolutions, J. Am. Math. Soc., 22, 4, 1055-1091 (2009) ·Zbl 1215.14055
[35]Maulik, D.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186, 2, 435-479 (2011) ·Zbl 1232.14039
[36]Maulik, D.; Pandharipande, R., A topological view of Gromov-Witten theory, Topology, 45, 5, 887-918 (2006) ·Zbl 1112.14065
[37]Maulik, D.; Pandharipande, R., Gromov-Witten theory and Noether-Lefschetz theory, (A Celebration of Algebraic Geometry. A Celebration of Algebraic Geometry, Clay Math. Proc., vol. 18 (2013), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 469-507 ·Zbl 1317.14126
[38]Maulik, D.; Pandharipande, R.; Thomas, R. P., Curves on K3 surfaces and modular forms, J. Topol., 3, 4, 937-996 (2010), With an appendix by A. Pixton ·Zbl 1207.14058
[39]Maulik, D.; Ranganathan, D., Logarithmic Donaldson-Thomas theory ·Zbl 1548.14009
[40]Moreira, M.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Virasoro constraints for stable pairs on toric 3-folds
[41]Nakajima, H., Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math. (2), 145, 2, 379-388 (1997) ·Zbl 0915.14001
[42]Nesterov, D., Quasimaps to moduli spaces of coherent sheaves
[43]Nesterov, D., Quasimaps to moduli spaces of coherent sheaves on a K3 surface
[44]Oberdieck, G., Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface ·Zbl 07960664
[45]Oberdieck, G., Gromov-Witten invariants of the Hilbert schemes of points of a K3 surface, Geom. Topol., 22, 1, 323-437 (2018) ·Zbl 1388.14154
[46]Oberdieck, G., Multiple cover formulas for K3 geometries, wallcrossing, and Quot schemes ·Zbl 07953188
[47]Oberdieck, G.; Pandharipande, R., Curve counting on \(K 3 \times E\), the Igusa cusp form \(\chi_{10}\), and descendent integration, (K3 Surfaces and Their Moduli. K3 Surfaces and Their Moduli, Progr. Math., vol. 315 (2016), Birkhäuser/Springer: Birkhäuser/Springer Cham), 245-278 ·Zbl 1349.14176
[48]Oberdieck, G.; Pixton, A., Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations, Geom. Topol., 23, 3, 1415-1489 (2019) ·Zbl 1441.14184
[49]Oblomkov, A.; Okounkov, A.; Pandharipande, R., GW/PT descendent correspondence via vertex operators, Commun. Math. Phys., 374, 3, 1321-1359 (2020) ·Zbl 1440.14259
[50]Okounkov, A.; Pandharipande, R., Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math., 179, 3, 523-557 (2010) ·Zbl 1198.14054
[51]Okounkov, A.; Pandharipande, R., The local Donaldson-Thomas theory of curves, Geom. Topol., 14, 3, 1503-1567 (2010) ·Zbl 1205.14067
[52]Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47-108 (2006) ·Zbl 1140.14047
[53]Okounkov, A.; Pandharipande, R., Hodge integrals and invariants of the unknot, Geom. Topol., 8, 675-699 (2004) ·Zbl 1062.14035
[54]Pandharipande, R.; Pixton, A., Descendent theory for stable pairs on toric 3-folds, J. Math. Soc. Jpn., 65, 4, 1337-1372 (2013) ·Zbl 1285.14061
[55]Pandharipande, R.; Pixton, A., Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol., 18, 5, 2747-2821 (2014) ·Zbl 1342.14114
[56]Pandharipande, R.; Pixton, A., Gromov-Witten/Pairs correspondence for the quintic 3-fold, J. Am. Math. Soc., 30, 2, 389-449 (2017) ·Zbl 1360.14134
[57]Pandharipande, R.; Thomas, R. P., Curve counting via stable pairs in the derived category, Invent. Math., 178, 2, 407-447 (2009) ·Zbl 1204.14026
[58]Pandharipande, R.; Tseng, H.-H., Higher genus Gromov-Witten theory of Hilbn(C2) and CohFTs associated to local curves, Forum Math. Pi, 7, Article e4 pp. (2019), 63 pp. ·Zbl 1461.14076
[59]Ranganathan, D., Logarithmic Gromov-Witten theory with expansions, Algebr. Geom., 9, 6, 714-761 (2022) ·Zbl 1509.14111
[60]Setayesh, I., Relative Hilbert scheme of points, J. Math. Soc. Jpn., 68, 3, 1325-1356 (2016) ·Zbl 1354.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp