[1] | Adhikari, K., Hole probabilities for β-ensembles and determinantal point processes in the complex plane, Electron. J. Probab., 23, 2018, 21 pp. ·Zbl 1410.60048 |
[2] | Adhikari, K.; Reddy, N. K., Hole probabilities for finite and infinite Ginibre ensembles, Int. Math. Res. Not., 2017, 21, 6694-6730, 2017 ·Zbl 1405.60066 |
[3] | Akemann, G.; Byun, S.-S.; Ebke, M., Universality of the number variance in rotational invariant two-dimensional Coulomb gases, J. Stat. Phys., 190, 1, Article 9 pp., 2023, 34 pp. ·Zbl 07615078 |
[4] | Akemann, G.; Byun, S.-S.; Ebke, M.; Schehr, G., Universality in the number variance and counting statistics of the real and symplectic Ginibre ensemble, J. Phys. A, Math. Theor., 56, Article 495202 pp., 2023 ·Zbl 1548.60033 |
[5] | Akemann, G.; Ipsen, J.; Strahov, E., Permanental processes from products of complex and quaternionic induced Ginibre ensembles, Random Matrices: Theory Appl., 3, 4, Article 1450014 pp., 2014, 54 pp. ·Zbl 1304.15025 |
[6] | Akemann, G.; Phillips, M. J.; Shifrin, L., Gap probabilities in non-Hermitian random matrix theory, J. Math. Phys., 50, 6, Article 063504 pp., 2009, 32 pp. ·Zbl 1216.60007 |
[7] | Akemann, G.; Strahov, E., Hole probabilities and overcrowding estimates for products of complex Gaussian matrices, J. Stat. Phys., 151, 6, 987-1003, 2013 ·Zbl 1314.15026 |
[8] | Akemann, G.; Vernizzi, G., Characteristic polynomials of complex random matrix models, Nucl. Phys. B, 660, 3, 532-556, 2003 ·Zbl 1030.82003 |
[9] | Ameur, Y.; Charlier, C.; Cronwall, J., The two-dimensional Coulomb gas: fluctuations through a spectral gap |
[10] | Ameur, Y.; Charlier, C.; Cronwall, J.; Lenells, J., Exponential moments for disk counting statistics at the hard edge of random normal matrices, J. Spectr. Theory, 13, 3, 841-902, 2023 ·Zbl 1536.60005 |
[11] | Ameur, Y.; Kang, N-G.; Seo, S-M., The random normal matrix model: insertion of a point charge, Potential Anal., 58, 2, 331-372, 2023 ·Zbl 1508.82046 |
[12] | Bauerschmidt, R.; Bourgade, P.; Nikula, M.; Yau, H.-T., The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem, Adv. Theor. Math. Phys., 23, 841-1002, 2019 ·Zbl 1486.82042 |
[13] | Billingsley, P., Probability and Measure, Wiley Series in Probability and Mathematical Statistics, 2012, John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York ·Zbl 1236.60001 |
[14] | Blackstone, E.; Charlier, C.; Lenells, J., Oscillatory asymptotics for Airy kernel determinants on two intervals, Int. Math. Res. Not., 2022, 4, 2636-2687, 2022 ·Zbl 1498.60178 |
[15] | Blackstone, E.; Charlier, C.; Lenells, J., Gap probabilities in the bulk of the Airy process, Random Matrices: Theory Appl., 11, 2, Article 2250022 pp., 2022, 30 pp. ·Zbl 1503.60056 |
[16] | Blackstone, E.; Charlier, C.; Lenells, J., The Bessel kernel determinant on large intervals and Birkhoff’s ergodic theorem, Commun. Pure Appl. Math., 76, 11, 3300-3345, 2023 ·Zbl 1529.37005 |
[17] | Bonnet, G.; David, F.; Eynard, B., Breakdown of universality in multi-cut matrix models, J. Phys. A, 33, 38, 6739-6768, 2000 ·Zbl 0963.82021 |
[18] | Borot, G.; Guionnet, A., Asymptotic expansion of beta matrix models in the multi-cut regime ·Zbl 1344.60012 |
[19] | Byun, S.-S.; Charlier, C., On the characteristic polynomial of the eigenvalue moduli of random normal matrices |
[20] | Byun, S.-S.; Forrester, P. J., Progress on the study of the Ginibre ensembles I: GinUE |
[21] | Byun, S.-S.; Forrester, P. J., Progress on the study of the Ginibre ensembles II: GinOE and GinSE |
[22] | Byun, S.-S.; Kang, N.-G.; Lee, J. O.; Lee, J., Real eigenvalues of elliptic random matrices, Int. Math. Res. Not., 2023, 3, 2243-2280, 2023 ·Zbl 1510.15051 |
[23] | Byun, S.-S.; Kang, N.-G.; Seo, S.-M., Partition functions of determinantal and Pfaffian Coulomb gases with radially symmetric potentials, Commun. Math. Phys., 401, 2, 1627-1663, 2023 ·Zbl 07707358 |
[24] | Byun, S.-S.; Seo, S.-M., Random normal matrices in the almost-circular regime, Bernoulli, 29, 2, 1615-1637, 2023 ·Zbl 1539.15041 |
[25] | Byun, S.-S.; Yang, M., Determinantal Coulomb gas ensembles with a class of discrete rotational symmetric potentials, SIAM J. Math. Anal., 55, 6, 6867-6897, 2023 ·Zbl 1538.82009 |
[26] | Charles, L.; Estienne, B., Entanglement entropy and Berezin-Toeplitz operators, Commun. Math. Phys., 376, 1, 521-554, 2020 ·Zbl 1508.81102 |
[27] | Charlier, C., Asymptotics of determinants with a rotation-invariant weight and discontinuities along circles, Adv. Math., 408, Article 108600 pp., 2022 ·Zbl 1527.41010 |
[28] | Charlier, C., Large gap asymptotics on annuli in the random normal matrix model, Math. Ann., 2023 |
[29] | Charlier, C.; Fahs, B.; Webb, C.; Wong, M. D., Asymptotics of Hankel determinants with a multi-cut regular potential and Fisher-Hartwig singularities, Mem. Am. Math. Soc., 2024, in press |
[30] | Charlier, C.; Lenells, J., Exponential moments for disk counting statistics of random normal matrices in the critical regime, Nonlinearity, 36, 3, 1593-1616, 2023 ·Zbl 1528.41081 |
[31] | Chau, L.-L.; Zaboronsky, O., On the structure of correlation functions in the normal matrix model, Commun. Math. Phys., 196, 1, 203-247, 1998 ·Zbl 0907.35123 |
[32] | Claeys, T.; Grava, T.; McLaughlin, K. T.-R., Asymptotics for the partition function in two-cut random matrix models, Commun. Math. Phys., 339, 2, 513-587, 2015 ·Zbl 1330.15039 |
[33] | Deaño, A.; Simm, N., Characteristic polynomials of complex random matrices and Painlevé transcendents, Int. Math. Res. Not., 2022, 1, 210-264, 2022 ·Zbl 1514.15050 |
[34] | Deift, P.; Its, A.; Zhou, X., A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math. (2), 146, 1, 149-235, 1997 ·Zbl 0936.47028 |
[35] | Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Commun. Pure Appl. Math., 52, 11, 1335-1425, 1999 ·Zbl 0944.42013 |
[36] | Elbau, P.; Felder, G., Density of eigenvalues of random normal matrices, Commun. Math. Phys., 259, 2, 433-450, 2005 ·Zbl 1129.82017 |
[37] | Fahs, B.; Krasovsky, I., Sine-kernel determinant on two large intervals, Commun. Pure Appl. Math., 2023 ·Zbl 1528.60011 |
[38] | FitzGerald, W.; Simm, N., Fluctuations and correlations for products of real asymmetric random matrices, Ann. Inst. Henri Poincaré Probab. Stat., 59, 4, 2308-2342, 2023 ·Zbl 1530.60006 |
[39] | Forrester, P. J., Some statistical properties of the eigenvalues of complex random matrices, Phys. Lett. A, 169, 1-2, 21-24, 1992 |
[40] | Ghosh, S.; Nishry, A., Point processes, hole events, and large deviations: random complex zeros and Coulomb gases, Constr. Approx., 48, 1, 101-136, 2018 ·Zbl 1409.60079 |
[41] | Grava, T., Partition function for multi-cut matrix models, J. Phys. A, 39, 28, 8905-8919, 2006 ·Zbl 1098.15018 |
[42] | Grobe, R.; Haake, F.; Sommers, H.-J., Quantum distinction of regular and chaotic dissipative motion, Phys. Rev. Lett., 61, 17, 1899-1902, 1988 |
[43] | Hedenmalm, H.; Makarov, N., Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc. (3), 106, 4, 859-907, 2013 ·Zbl 1336.82010 |
[44] | Jancovici, B.; Lebowitz, J.; Manificat, G., Large charge fluctuations in classical Coulomb systems, J. Stat. Phys., 72, 3-4, 773-787, 1993 ·Zbl 1101.82307 |
[45] | Kanzieper, E.; Poplavskyi, M.; Timm, C.; Tribe, R.; Zaboronski, O., What is the probability that a large random matrix has no real eigenvalues?, Ann. Appl. Probab., 26, 5, 2733-2753, 2016 ·Zbl 1375.60019 |
[46] | Krasovsky, I.; Maroudas, T.-H., Airy-kernel determinant on two large intervals ·Zbl 07811946 |
[47] | Lacroix-A-Chez-Toine, B.; Majumdar, S. N.; Schehr, G., Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: exact results for the entanglement entropy and number variance, Phys. Rev. A, 99, Article 021602 pp., 2019 |
[48] | Lacroix-A-Chez-Toine, B.; Garzón, J. A.M.; Calva, C. S.H.; Castillo, I. P.; Kundu, A.; Majumdar, S. N.; Schehr, G., Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble, Phys. Rev. E, 100, Article 012137 pp., 2019 |
[49] | Leblé, T.; Serfaty, S., Large deviation principle for empirical fields of log and Riesz gases, Invent. Math., 210, 3, 645-757, 2017 ·Zbl 1397.82007 |
[50] | Leblé, T.; Serfaty, S., Fluctuations of two dimensional Coulomb gases, Geom. Funct. Anal., 28, 2, 443-508, 2018 ·Zbl 1423.60045 |
[51] | Marchal, O., Asymptotic expansion of Toeplitz determinants of an indicator function with discrete rotational symmetry and powers of random unitary matrices, Lett. Math. Phys., 113, 4, Article 78 pp., 2023, 16 pp. ·Zbl 1522.15031 |
[52] | Mehta, M. L., Random Matrices, Pure and Applied Mathematics (Amsterdam), vol. 142, 2004, Elsevier/Academic Press: Elsevier/Academic Press Amsterdam ·Zbl 1107.15019 |
[53] | Nagao, T.; Akemann, G.; Kieburg, M.; Parra, I., Families of two-dimensional Coulomb gases on an ellipse: correlation functions and universality, J. Phys. A, 53, 7, Article 075201 pp., 2020, 36 pp. ·Zbl 1514.82195 |
[54] | Olver, F. W.J.; Olde Daalhuis, A. B.; Lozier, D. W.; Schneider, B. I.; Boisvert, R. F.; Clark, C. W.; Miller, B. R.; Saunders, B. V., NIST digital library of mathematical functions, Release 1.0.13 of 2016-09-16 |
[55] | Saff, E. B.; Totik, V., Logarithmic Potentials with External Fields, Grundlehren der Mathematischen Wissenschaften, 1997, Springer-Verlag: Springer-Verlag Berlin ·Zbl 0881.31001 |
[56] | Seo, S.-M., Edge behavior of two-dimensional Coulomb gases near a hard wall, Ann. Henri Poincaré, 23, 6, 2247-2275, 2022 ·Zbl 07541500 |
[57] | Shcherbina, M., Fluctuations of linear eigenvalue statistics of β matrix models in the multi-cut regime, J. Stat. Phys., 151, 6, 1004-1034, 2013 ·Zbl 1273.15042 |
[58] | Smith, N. R.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Counting statistics for non-interacting fermions in a d-dimensional potential, Phys. Rev. E, 103, 3, Article L030105 pp., 2021, 8 pp. |
[59] | Smith, N. R.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Counting statistics for non-interacting fermions in a rotating trap, Phys. Rev. A, 105, Article 043315 pp., 2022 |
[60] | Temme, N. M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics, 1996, John Wiley & Sons ·Zbl 0856.33001 |
[61] | Tricomi, F. G., Asymptotische Eigenschaften der unvollständigen Gammafunktion, Math. Z., 53, 136-148, 1950 ·Zbl 0038.22105 |
[62] | Webb, C.; Wong, M. D., On the moments of the characteristic polynomial of a Ginibre random matrix, Proc. Lond. Math. Soc. (3), 118, 5, 1017-1056, 2019 ·Zbl 1447.60031 |
[63] | Widom, H., Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals, Commun. Math. Phys., 171, 159-180, 1995 ·Zbl 0839.47032 |
[64] | Zabrodin, A.; Wiegmann, P., Large-N expansion for the 2D Dyson gas, J. Phys. A, 39, 28, 8933-8963, 2006 ·Zbl 1098.82011 |
[65] | Życzkowski, K.; Sommers, H.-J., Truncations of random unitary matrices, J. Phys. A, 33, 10, 2045-2057, 2000 ·Zbl 0957.82017 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.