Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Spread approximations for forbidden intersections problems.(English)Zbl 1543.05182

This article develops a versatile new method of ‘spread approximations’ for extremal and structural results on hypergraphs. This approach was inspired by recent breakthroughs on the Erdős-Rado sunflower conjecture byA. Rao [Discrete Anal. 2020, Paper No. 2, 8 p. (2020;Zbl 1450.05092)] andR. Alweiss et al. [Ann. Math. (2) 194, No. 3, 795–815 (2021;Zbl 1479.05343)]. Two applications investigated here are to regular \(t\)-intersecting families, including the permutation setting, and new ranges for the Erdős-Sós problem, which asks to avoid intersection \(t-1\).
The main results are Theorems 1 and 2. The first of these is an impressive partial resolution of the Erdős-Sós problem for uniform set systems: Suppose \(\alpha>1\) and \(0<\beta<\frac{1}{2}\) satisfy \(\alpha>2\beta+1\). Then for all sufficiently large \(k\), letting \(n=\lceil k^\alpha \rceil\) and \(t=\lceil k^\beta \rceil\), a \(k\)-uniform family \(\mathcal{F} \subset 2^{[n]}\) which avoids intersection \(t-1\) satisfies the expected bound \(|\mathcal{F}| \le \binom{n-t}{k-t}\). The allowed rate of growth of \(t\) is noteworthy here.
Theorem 2 concerns families \(\mathcal{P}\) of permutations in the symmetric group on \(n\) symbols. It states: (i) if \(\mathcal{P}\) is \(t\)-intersecting and \(n>C_1 t \log^2 n\), then \(|\mathcal{P}| \le (n-t)!\); and (ii) if \(\mathcal{P}\) avoids intersection \(t-1\) and \(n>C_2 \max(t^2 \log^2 n,t^3 \log n)\) then again \(|\mathcal{P}| \le (n-t)!\). Explicit constants and structural results are given, but we omit the details in this review. Theorem 2 is nice in that it improves the previous work ofD. Ellis et al. [J. Am. Math. Soc. 24, No. 3, 649–682 (2011;Zbl 1285.05171)] on the \(t\)-intersecting and Erdős-Sós questions for permutations while bypassing representation theory and eigenvalue methods.
To understand the general method, a good starting point is [“The sunflower lemma via Shannon entropy”,https://terrytao.wordpress.com/2020/07/20/the-sunflower-lemma-via-shannon-entropy/], a blog post byT. Tao, which explains (and slightly refines) the earlier work on sunflowers. Then, a good warm-up to this paper’s methodology is found in Section 3, specifically Theorem 8. More technical results necessary for the Erdős-Sós statements are given later, in Section 4. This is a nicely written paper that will likely prove useful for new settings in extremal combinatorics.

MSC:

05D05 Extremal set theory
05A05 Permutations, words, matrices
05C65 Hypergraphs

Cite

References:

[1]Ahlswede, R.; Khachatrian, L. H., The complete intersection theorem for systems of finite sets, Eur. J. Comb., 18, 125-136, 1997 ·Zbl 0869.05066
[2]Alweiss, R.; Lovett, S.; Wu, K.; Zhang, J., Improved bounds for the sunflower lemma, 2019
[3]Bell, T.; Chueluecha, S.; Warnke, L., Note on sunflowers, Discrete Math., 344, N7, Article 112367 pp., 2021 ·Zbl 1466.05204
[4]Bollobás, B.; Thomason, A. G., Threshold functions, Combinatorica, 7, 35-38, 1987 ·Zbl 0648.05048
[5]Cameron, P.; Ku, C. Y., Intersecting families of permutations, Eur. J. Comb., 24, 881-890, 2003 ·Zbl 1026.05001
[6]Deza, M.; Frankl, P., On the maximum number of permutations with given maximal or minimal distance, J. Comb. Theory, Ser. A, 22, 352-360, 1977 ·Zbl 0352.05003
[7]Dinur, I.; Safra, S., On the hardness of approximating minimum vertex cover, Ann. Math., 162, 439-485, 2005 ·Zbl 1084.68051
[8]Ellis, D.; Friedgut, E.; Pilpel, H., Intersecting families of permutations, J. Am. Math. Soc., 24, 649-682, 2011 ·Zbl 1285.05171
[9]Ellis, D.; Kalai, G.; Narayanan, B., On symmetric intersecting families, Eur. J. Comb., 86, Article 103094 pp., 2020 ·Zbl 1437.05229
[10]Ellis, D.; Keller, N.; Lifshitz, N., Stability for the complete intersection theorem, and the forbidden intersection problem of Erdős and Sós, 2016
[11]Ellis, D.; Lifshitz, N., Approximation by juntas in the symmetric group, and forbidden intersection problems, Duke Math. J., 171, 7, 1417-1467, 2022 ·Zbl 1490.05262
[12]Erdős, P., Problems and Results in Graph Theory and Combinatorial Analysis, Proc. 5th British Combinatorial Conference, 169-192, 1975 ·Zbl 0335.05002
[13]Erdős, P.; Ko, C.; Rado, R., Intersection theorems for systems of finite sets, Q. J. Math., 12, N1, 313-320, 1961 ·Zbl 0100.01902
[14]Erdős, P.; Rado, R., Intersection theorems for systems of sets, J. Lond. Math. Soc., 35, N1, 85-90, 1960 ·Zbl 0103.27901
[15]Fischer, E.; Kindler, G.; Ron, D.; Safra, S.; Samorodnitsky, A., Testing juntas, J. Comput. Syst. Sci., 68, 753-787, 2004 ·Zbl 1076.68112
[16]Frankl, P., The Erdős-Ko-Rado theorem is true for n=ckt, (Combinatorics, Proc. Fifth Hungarian Colloq., vol. I. Combinatorics, Proc. Fifth Hungarian Colloq., vol. I, Keszthely, 1976. Combinatorics, Proc. Fifth Hungarian Colloq., vol. I. Combinatorics, Proc. Fifth Hungarian Colloq., vol. I, Keszthely, 1976, Colloq. Math. Soc. János Bolyai, vol. 18, 1978, North-Holland), 365-375 ·Zbl 0401.05001
[17]Frankl, P., On intersecting families of finite sets, Bull. Aust. Math. Soc., 21, 363-372, 1980 ·Zbl 0425.05002
[18]Frankl, P., Erdos-Ko-Rado theorem with conditions on the maximal degree, J. Comb. Theory, Ser. A, 46, N2, 252-263, 1987 ·Zbl 0661.05002
[19]Frankl, P.; Füredi, Z., Forbidding just one intersection, J. Comb. Theory, Ser. A, 39, 160-176, 1985 ·Zbl 0573.05001
[20]Frankl, P.; Füredi, Z., Exact solution of some Turán-type problems, J. Comb. Theory, Ser. A, 45, 226-262, 1987 ·Zbl 0661.05003
[21]Frankl, P.; Füredi, Z., Beyond the Erdos-Ko-Rado theorem, J. Comb. Theory, Ser. A, 56, N2, 182-194, 1991 ·Zbl 0742.05080
[22]Frankl, P.; Rödl, V., Forbidden intersections, Trans. Am. Math. Soc., 300, 259-286, 1987 ·Zbl 0611.05002
[23]Frankl, P.; Rödl, V., A partition property of simplices in Euclidean space, J. Am. Math. Soc., 3, N1, 1-7, 1990 ·Zbl 0696.05014
[24]Frankl, P.; Wilson, R., Intersection theorems with geometric consequences, Combinatorica, 1, 357-368, 1981 ·Zbl 0498.05048
[25]Frankston, K.; Kahn, J.; Narayanan, B.; Park, J., Thresholds versus fractional expectation-thresholds, Ann. Math., 194, 475-495, 2021 ·Zbl 1472.05132
[26]Ihringer, F.; Kupavskii, A., Regular intersecting families, Discrete Appl. Math., 270, 142-152, 2019 ·Zbl 1426.05172
[27]Keller, N.; Lifshitz, N., The junta method for hypergraphs and Chvátal’s simplex conjecture, 2017
[28]Keevash, P.; Lifshitz, N.; Long, E.; Minzer, D., Hypercontractivity for global functions and sharp thresholds, 2019
[29]Keevash, P.; Lifshitz, N.; Long, E.; Minzer, D., Global hypercontractivity and its applications, 2021
[30]Keevash, P.; Long, E., Frankl-Rödl-type theorems for codes and permutations, Trans. Am. Math. Soc., 369, 1147-1162, 2016 ·Zbl 1350.05170
[31]Larose, B.; Malvenuto, C., Stable sets of maximal size in Kneser-type graphs, Eur. J. Comb., 25, N5, 657-673, 2004 ·Zbl 1048.05078
[32]Raigorodskii, A. M., Borsuk’s problem and the chromatic numbers of some metric spaces, Russ. Math. Surv., 56, N1, 103-139, 2001 ·Zbl 1008.54018
[33]Razborov, A.; Vereshchagin, N., One property of cross-intersecting families, (Proc. of Erdős Memorial Conference. Proc. of Erdős Memorial Conference, Hungary, 1999), TR99-014
[34]Talagrand, M., Are many small sets explicitly small?, (Proceedings of the 2010 ACM International Symposium on Theory of Computing, 2010), 13-35 ·Zbl 1293.60014
[35]Tao, T., The sunflower lemma via Shannon entropy
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp