[1] | Battseren, B.-O., Von Neumann equivalence and group exactness. J. Funct. Anal., 4 (2023) ·Zbl 1512.46038 |
[2] | Battseren, B.-O., Von Neumann equivalence and \(M_d\) type approximation properties. Proc. Am. Math. Soc., 10, 4447-4459 (2023) ·Zbl 1535.43004 |
[3] | Bekka, M. E.B.; Valette, A., Kazhdan’s property \((\operatorname{T})\) and amenable representations. Math. Z., 2, 293-299 (1993) ·Zbl 0789.22006 |
[4] | Berbec, M., \( \operatorname{W}^\ast \)-superrigidity for wreath products with groups having positive first \(\ell^2\)-Betti number. Int. J. Math., 1 (2015) ·Zbl 1329.46054 |
[5] | Berbec, M.; Vaes, S., \( \operatorname{W}^\ast \)-superrigidity for group von Neumann algebras of left-right wreath products. Proc. Lond. Math. Soc. (3), 5, 1116-1152 (2014) ·Zbl 1304.46054 |
[6] | Blecher, D. P., Tensor products of operator spaces. II. Can. J. Math., 1, 75-90 (1992) ·Zbl 0787.46059 |
[7] | Blecher, D. P.; Le Merdy, C., Operator Algebras and Their Modules—an Operator Space Approach. London Mathematical Society Monographs. New Series (2004), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press Oxford, Oxford Science Publications ·Zbl 1061.47002 |
[8] | Blecher, D. P.; Paulsen, V. I., Tensor products of operator spaces. J. Funct. Anal., 2, 262-292 (1991) ·Zbl 0786.46056 |
[9] | Boutonnet, R.; Ioana, A.; Peterson, J., Properly proximal groups and their von Neumann algebras. Ann. Sci. Éc. Norm. Supér. (4), 2, 445-482 (2021) ·Zbl 07360850 |
[10] | Chifan, I.; Ioana, A., On a question of D. Shlyakhtenko. Proc. Am. Math. Soc., 3, 1091-1093 (2011) ·Zbl 1213.46052 |
[11] | Chifan, I.; Ioana, A., Amalgamated free product rigidity for group von Neumann algebras. Adv. Math., 819-850 (2018) ·Zbl 1390.46053 |
[12] | Choda, M., Group factors of the Haagerup type. Proc. Jpn. Acad., Ser. A, Math. Sci., 5, 174-177 (1983) ·Zbl 0523.46038 |
[13] | Connes, A., Classification of injective factors. Cases \(I I_1, I I_\infty, I I I_\lambda, \lambda \neq 1\). Ann. Math. (2), 1, 73-115 (1976) ·Zbl 0343.46042 |
[14] | Connes, A., Classification des facteurs, 43-109 ·Zbl 0503.46043 |
[15] | Connes, A., Noncommutative Geometry (1994), Academic Press, Inc.: Academic Press, Inc. San Diego, CA ·Zbl 1106.58004 |
[16] | Connes, A.; Jones, V., Property \(T\) for von Neumann algebras. Bull. Lond. Math. Soc., 1, 57-62 (1985) ·Zbl 1190.46047 |
[17] | Connes, A.; Shlyakhtenko, D., \( L^2\)-homology for von Neumann algebras. J. Reine Angew. Math., 125-168 (2005) ·Zbl 1083.46034 |
[18] | Ding, C.; Peterson, J., Biexact von Neumann algebras (2023) |
[19] | Duchesne, B.; Tucker-Drob, R.; Wesolek, P., A new lattice invariant for lattices in totally disconnected locally compact groups. Isr. J. Math., 2, 539-565 (2020) ·Zbl 1472.22004 |
[20] | Dye, H. A., On groups of measure preserving transformations. I. Am. J. Math., 119-159 (1959) ·Zbl 0087.11501 |
[21] | Dye, H. A., On groups of measure preserving transformations. II. Am. J. Math., 551-576 (1963) ·Zbl 0191.42803 |
[22] | Effros, E. G., Property Γ and inner amenability. Proc. Am. Math. Soc., 483-486 (1975) ·Zbl 0321.22011 |
[23] | Furman, A., Gromov’s measure equivalence and rigidity of higher rank lattices. Ann. Math. (2), 3, 1059-1081 (1999) ·Zbl 0943.22013 |
[24] | Furman, A., Orbit equivalence rigidity. Ann. Math. (2), 3, 1083-1108 (1999) ·Zbl 0943.22012 |
[25] | Furman, A., A survey of measured group theory, 296-374 ·Zbl 1267.37004 |
[26] | Gaboriau, D., Sur la (co-)homologie \(L^2\) des actions préservant une mesure. C. R. Acad. Sci. Paris Sér. I Math., 5, 365-370 (2000) ·Zbl 0988.37003 |
[27] | Gaboriau, D., On orbit equivalence of measure preserving actions, 167-186 ·Zbl 1036.22008 |
[28] | Gaboriau, D., Examples of groups that are measure equivalent to the free group. Ergod. Theory Dyn. Syst., 6, 1809-1827 (2005) ·Zbl 1130.37311 |
[29] | Ge, L.; Kadison, R., On tensor products of von Neumann algebras. Invent. Math., 3, 453-466 (1996) ·Zbl 0902.46037 |
[30] | Gromov, M., Asymptotic invariants of infinite groups, 1-295 |
[31] | Ioana, A., Classification and rigidity for von Neumann algebras, 601-625 ·Zbl 1364.46003 |
[32] | Ioana, A., Rigidity for von Neumann algebras, 1635-1668 |
[33] | Ioana, A.; Popa, S.; Vaes, S., A class of superrigid group von Neumann algebras. Ann. Math. (2), 1, 231-286 (2013) ·Zbl 1295.46041 |
[34] | Ishan, I., Von Neumann equivalence and group approximation properties (2021) |
[35] | Kida, Y., Measure equivalence rigidity of the mapping class group. Ann. Math. (2), 3, 1851-1901 (2010) ·Zbl 1277.37005 |
[36] | Kida, Y., Rigidity of amalgamated free products in measure equivalence. J. Topol., 3, 687-735 (2011) ·Zbl 1288.20032 |
[37] | Kida, Y., Stability in orbit equivalence for Baumslag-Solitar groups and Vaes groups. Groups Geom. Dyn., 1, 203-235 (2015) ·Zbl 1418.37008 |
[38] | Kida, Y.; Tucker-Drob, R., Inner amenable groupoids and central sequences. Forum Math. Sigma (2020) ·Zbl 1446.37011 |
[39] | Koivisto, J.; Kyed, D.; Raum, S., Measure equivalence and coarse equivalence for unimodular locally compact groups. Groups Geom. Dyn., 1, 223-267 (2021) ·Zbl 1544.22004 |
[40] | Koivisto, J.; Kyed, D.; Raum, S., Measure equivalence for non-unimodular groups. Transform. Groups, 1, 327-346 (2021) ·Zbl 1484.22006 |
[41] | Kraus, J., The slice map problem and approximation properties. J. Funct. Anal., 1, 116-155 (1991) ·Zbl 0747.46046 |
[42] | Lance, E. C., Hilbert \(C^\ast \)-Modules. London Mathematical Society Lecture Note Series (1995), Cambridge University Press: Cambridge University Press Cambridge, A toolkit for operator algebraists ·Zbl 0822.46080 |
[43] | Margulis, G. A., Discrete groups of motions of manifolds of nonpositive curvature, 21-34 ·Zbl 0336.57037 |
[44] | Monod, N., Continuous Bounded Cohomology of Locally Compact Groups. Lecture Notes in Mathematics (2001), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0967.22006 |
[45] | Monod, N.; Shalom, Y., Orbit equivalence rigidity and bounded cohomology. Ann. Math. (2), 3, 826-878 (2006) ·Zbl 1129.37003 |
[46] | Murray, F. J.; von Neumann, J., On rings of operators. II. Trans. Am. Math. Soc., 2, 208-248 (1937) ·JFM 63.1008.03 |
[47] | Murray, F. J.; von Neumann, J., On rings of operators. IV. Ann. Math. (2), 716-808 (1943) ·Zbl 0060.26903 |
[48] | Ornstein, Donald S.; Weiss, B., Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Am. Math. Soc. (N.S.), 1, 161-164 (1980) ·Zbl 0427.28018 |
[49] | Paschke, W. L., Inner product modules over \(B^\ast \)-algebras. Trans. Am. Math. Soc., 443-468 (1973) ·Zbl 0239.46062 |
[50] | Pimsner, M.; Popa, S., Entropy and index for subfactors. Ann. Sci. Éc. Norm. Supér. (4), 1, 57-106 (1986) ·Zbl 0646.46057 |
[51] | Pisier, G., Introduction to Operator Space Theory. London Mathematical Society Lecture Note Series (2003), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1093.46001 |
[52] | Popa, S., Correspondences (1986), INCREST preprint No. 56/1986 |
[53] | Popa, S., On a class of type \(\operatorname{II}_1\) factors with Betti numbers invariants. Ann. Math. (2), 3, 809-899 (2006) ·Zbl 1120.46045 |
[54] | Popa, S., Strong rigidity of \(\operatorname{I} \operatorname{I}_1\) factors arising from malleable actions of \(w\)-rigid groups. I. Invent. Math., 2, 369-408 (2006) ·Zbl 1120.46043 |
[55] | Popa, S., Strong rigidity of \(\operatorname{I} \operatorname{I}_1\) factors arising from malleable actions of \(w\)-rigid groups. II. Invent. Math., 2, 409-451 (2006) ·Zbl 1120.46044 |
[56] | Popa, S., Cocycle and orbit equivalence superrigidity for malleable actions of \(w\)-rigid groups. Invent. Math., 2, 243-295 (2007) ·Zbl 1131.46040 |
[57] | Popa, S., Deformation and rigidity for group actions and von Neumann algebras, 445-477 ·Zbl 1132.46038 |
[58] | Popa, S., On the superrigidity of malleable actions with spectral gap. J. Am. Math. Soc., 4, 981-1000 (2008) ·Zbl 1222.46048 |
[59] | Popa, S.; Shlyakhtenko, D., Representing interpolated free group factors as group factors. Groups Geom. Dyn., 3, 837-855 (2020) ·Zbl 1478.46055 |
[60] | Popa, S.; Vaes, S., On the fundamental group of \(\operatorname{II}_1\) factors and equivalence relations arising from group actions, 519-541 ·Zbl 1222.37008 |
[61] | Ruan, Z.-J., On the predual of dual algebras. J. Oper. Theory, 1, 179-192 (1992) ·Zbl 0846.47032 |
[62] | Sako, H., The class \(S\) as an ME invariant. Int. Math. Res. Not., 15, 2749-2759 (2009) ·Zbl 1180.46045 |
[63] | Schweizer, J., Hilbert \(C^\ast \)-modules with a predual. J. Oper. Theory, 621-632 (2002) ·Zbl 1029.46088 |
[64] | Singer, I. M., Automorphisms of finite factors. Am. J. Math., 117-133 (1955) ·Zbl 0064.11001 |
[65] | Takesaki, M., Theory of Operator Algebras. I. Encyclopaedia of Mathematical Sciences (2002), Springer-Verlag: Springer-Verlag Berlin, Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5 ·Zbl 0990.46034 |
[66] | Vaes, S., Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa), 237-294 ·Zbl 1194.46085 |
[67] | Vaes, S., Rigidity for von Neumann algebras and their invariants, 1624-1650 ·Zbl 1235.46058 |
[68] | v. Neumann, J.; Wigner, E. P., Minimally almost periodic groups. Ann. Math. (2), 746-750 (1940) ·JFM 66.0544.02 |
[69] | Zimmer, R. J., Ergodic Theory and Semisimple Groups. Monographs in Mathematics (1984), Birkhäuser Verlag: Birkhäuser Verlag Basel ·Zbl 0571.58015 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.