Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

K-stability and Fujita approximation.(English)Zbl 1540.32010

Cheltsov, Ivan (ed.) et al., Birational geometry, Kähler-Einstein metrics and degenerations. Proceedings of the conferences, Moscow, Russia, April 8–13, 2019, Shanghai, China, June 10–14, 2019, Pohang, South Korea, November 18–22, 2019. Cham: Springer. Springer Proc. Math. Stat. 409, 545-566 (2023).
Summary: This note is a continuation to the paper [C. Li, “Geodesic rays and stability in the cscK problem”, Ann. Sci. Éc. Norm. Supér. (4) (accepted),arXiv:2001.01366]. We derive a formula for non-Archimedean Monge-Ampère measures of big models. As applications, we derive a positive intersection formula for non-Archimedean Mabuchi functional, and further reduces the \((\operatorname{Aut}(X, L)_0)\)-uniform Yau-Tian-Donaldson conjecture for polarized manifolds to a conjecture on the existence of approximate Zariski decompositions that satisfy some asymptotic vanishing condition. In an appendix, we also verify this conjecture for some of Nakayama’s examples that do not admit birational Zariski decompositions.
For the entire collection see [Zbl 1515.14010].

MSC:

32Q15 Kähler manifolds
14E30 Minimal model program (Mori theory, extremal rays)
32P05 Non-Archimedean analysis
32Q26 Notions of stability for complex manifolds

Cite

References:

[1]Berman, R., Boucksom, S., Jonsson, M.: A variational approach to the Yau-Tian-Donaldson conjecture. arXiv:1509.04561v2 ·Zbl 1487.32141
[2]Billingsley, P., Convergence of Probability Measures (1999), New York: Wiley, New York ·Zbl 0944.60003 ·doi:10.1002/9780470316962
[3]Blum, H., Liu, Y., Xu, C.: Openness of K-semistability for Fano varieties. arXiv:1907.02408 ·Zbl 1503.14040
[4]Boucksom, S.: Variational and non-Archimedean aspects of Yau-Tian-Donaldson conjecture. arXiv:1805.03289 ·Zbl 1447.32030
[5]Boucksom, S.; Demailly, J-P; Pǎun, M.; Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 2, 201-248 (2013) ·Zbl 1267.32017 ·doi:10.1090/S1056-3911-2012-00574-8
[6]Boucksom, S.; Favre, C.; Jonsson, M., Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom., 18, 2, 279-308 (2009) ·Zbl 1162.14003 ·doi:10.1090/S1056-3911-08-00490-6
[7]Boucksom, S.; Favre, C.; Jonsson, M., Solution to a non-Archimedean Monge-Ampère equation, J. Am. Math. Soc., 28, 617-667 (2015) ·Zbl 1325.32021 ·doi:10.1090/S0894-0347-2014-00806-7
[8]Boucksom, S.; Favre, C.; Jonsson, M., Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom., 25, 1, 77-139 (2016) ·Zbl 1346.14065 ·doi:10.1090/jag/656
[9]Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble), 67, 87-139 (2017) ·Zbl 1391.14090 ·doi:10.5802/aif.3096
[10]Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS), 21, 9, 2905-2944 (2019) ·Zbl 1478.53115 ·doi:10.4171/JEMS/894
[11]Boucksom, S., Jonsson, M.: Singular semipositive metrics on line bundles on varieties over trivially valued fields. arXiv:1801.08229
[12]Boucksom, S., Jonsson, M.: A non-Archimedean approach to K-stability. arXiv:1805.11160v1 ·Zbl 1401.32019
[13]Chambert-Loir, A., Mesures et équidistribution sur des espaces de Berkovich, J. Reine Angew. Math., 595, 215-235 (2006) ·Zbl 1112.14022
[14]Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics, general automorphism group. arXiv:1801.05907
[15]Cutkosky, SD; Srinivas, V., On a problem of Zariski on dimensions of linear systems, Ann. Math., 137, 531-559 (1993) ·Zbl 0822.14006 ·doi:10.2307/2946531
[16]Delcroix, T.: Uniform K-stability of polarized spherical varieties. arXiv:2009.06463 ·Zbl 1520.14098
[17]Delcroix, T.: The Yau-Tian-Donaldson conjecture for cohomogeneity one manifolds. arXiv:2011.07135
[18]Demailly, J-P; Ein, L.; Lazarsfeld, R., A subadditivity property of multiplier ideas, Michigan Math. J., 48, 137-156 (2000) ·Zbl 1077.14516 ·doi:10.1307/mmj/1030132712
[19]Donaldson, S., Scalar curvature and stability of toric varieties, J. Diff. Geom., 62, 2, 289-349 (2002) ·Zbl 1074.53059
[20]Ein, L.; Lazarsfeld, R.; Mustaţă, M.; Nakamaye, M.; Popa, M., Restricted volumes and base loci of linear series, Am. J. Math., 131, 3, 607-651 (2009) ·Zbl 1179.14006 ·doi:10.1353/ajm.0.0054
[21]Holschbach, A.: A Chebotarev-type density theorem for divisors on algebraic varieties. arXiv:1006.2340
[22]Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006) ·Zbl 1117.13001
[23]Koike, T., Minimal singular metrics of a line bundle admitting no Zariski decomposition, Tohoku Math. J., 67, 297-321 (2015) ·Zbl 1326.32031 ·doi:10.2748/tmj/1435237045
[24]Lazarsfeld, R.: Positivity in algebraic geometry I, classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 48. Springer, Berlin (2004) ·Zbl 1093.14501
[25]Lazarsfeld, R.: Positivity in algebraic geometry II, positivity for vector bundles, and multiplier ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 49. Springer, Berlin (2004) ·Zbl 1093.14500
[26]Li, C.: Geodesic rays and stability in the cscK problem, accepted by Annales Scientifiques de l’ENS. arXiv:2001.01366
[27]Li, C., Xu, C.: Special test configurations and K-stability of Fano varieties. Ann. Math. 180(2), no.1, 197-232 (2014) ·Zbl 1301.14026
[28]Matsumura, S., Restricted volumes and divisorial Zariski decomposition, Am. J. Math., 135, 637-662 (2013) ·Zbl 1277.14006 ·doi:10.1353/ajm.2013.0030
[29]Odaka, Y., A generalization of the Ross-Thomas slope theory, Osaka J. Math., 50, 171-185 (2013) ·Zbl 1328.14073
[30]Nakayama, N.: Zariski-decomposition and abundance. MSJ Memoirs, vol. 14. Mathematical Society of Japan, Tokyo (2004) ·Zbl 1061.14018
[31]Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130, 239-265 (1997) ·Zbl 0892.53027 ·doi:10.1007/s002220050176
[32]Tian, G.: K-stability implies CM-stability, Geometry, analysis and probability, 245-261, Progress in Mathematics, vol. 310. Birkhäuser, Springer, Cham (2017) ·Zbl 1376.32012
[33]Tsuji, H., Pluricanonical systems of projective varieties of general type, I. Osaka J. Math., 43, 4, 967-995 (2006) ·Zbl 1142.14012
[34]Wang, X., Heights and GIT weight, Math. Res. Lett., 19, 909-926 (2012) ·Zbl 1408.14147 ·doi:10.4310/MRL.2012.v19.n4.a14
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp