[1] | Berman, R., Boucksom, S., Jonsson, M.: A variational approach to the Yau-Tian-Donaldson conjecture. arXiv:1509.04561v2 ·Zbl 1487.32141 |
[2] | Billingsley, P., Convergence of Probability Measures (1999), New York: Wiley, New York ·Zbl 0944.60003 ·doi:10.1002/9780470316962 |
[3] | Blum, H., Liu, Y., Xu, C.: Openness of K-semistability for Fano varieties. arXiv:1907.02408 ·Zbl 1503.14040 |
[4] | Boucksom, S.: Variational and non-Archimedean aspects of Yau-Tian-Donaldson conjecture. arXiv:1805.03289 ·Zbl 1447.32030 |
[5] | Boucksom, S.; Demailly, J-P; Pǎun, M.; Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 2, 201-248 (2013) ·Zbl 1267.32017 ·doi:10.1090/S1056-3911-2012-00574-8 |
[6] | Boucksom, S.; Favre, C.; Jonsson, M., Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom., 18, 2, 279-308 (2009) ·Zbl 1162.14003 ·doi:10.1090/S1056-3911-08-00490-6 |
[7] | Boucksom, S.; Favre, C.; Jonsson, M., Solution to a non-Archimedean Monge-Ampère equation, J. Am. Math. Soc., 28, 617-667 (2015) ·Zbl 1325.32021 ·doi:10.1090/S0894-0347-2014-00806-7 |
[8] | Boucksom, S.; Favre, C.; Jonsson, M., Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom., 25, 1, 77-139 (2016) ·Zbl 1346.14065 ·doi:10.1090/jag/656 |
[9] | Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble), 67, 87-139 (2017) ·Zbl 1391.14090 ·doi:10.5802/aif.3096 |
[10] | Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc. (JEMS), 21, 9, 2905-2944 (2019) ·Zbl 1478.53115 ·doi:10.4171/JEMS/894 |
[11] | Boucksom, S., Jonsson, M.: Singular semipositive metrics on line bundles on varieties over trivially valued fields. arXiv:1801.08229 |
[12] | Boucksom, S., Jonsson, M.: A non-Archimedean approach to K-stability. arXiv:1805.11160v1 ·Zbl 1401.32019 |
[13] | Chambert-Loir, A., Mesures et équidistribution sur des espaces de Berkovich, J. Reine Angew. Math., 595, 215-235 (2006) ·Zbl 1112.14022 |
[14] | Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics, general automorphism group. arXiv:1801.05907 |
[15] | Cutkosky, SD; Srinivas, V., On a problem of Zariski on dimensions of linear systems, Ann. Math., 137, 531-559 (1993) ·Zbl 0822.14006 ·doi:10.2307/2946531 |
[16] | Delcroix, T.: Uniform K-stability of polarized spherical varieties. arXiv:2009.06463 ·Zbl 1520.14098 |
[17] | Delcroix, T.: The Yau-Tian-Donaldson conjecture for cohomogeneity one manifolds. arXiv:2011.07135 |
[18] | Demailly, J-P; Ein, L.; Lazarsfeld, R., A subadditivity property of multiplier ideas, Michigan Math. J., 48, 137-156 (2000) ·Zbl 1077.14516 ·doi:10.1307/mmj/1030132712 |
[19] | Donaldson, S., Scalar curvature and stability of toric varieties, J. Diff. Geom., 62, 2, 289-349 (2002) ·Zbl 1074.53059 |
[20] | Ein, L.; Lazarsfeld, R.; Mustaţă, M.; Nakamaye, M.; Popa, M., Restricted volumes and base loci of linear series, Am. J. Math., 131, 3, 607-651 (2009) ·Zbl 1179.14006 ·doi:10.1353/ajm.0.0054 |
[21] | Holschbach, A.: A Chebotarev-type density theorem for divisors on algebraic varieties. arXiv:1006.2340 |
[22] | Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006) ·Zbl 1117.13001 |
[23] | Koike, T., Minimal singular metrics of a line bundle admitting no Zariski decomposition, Tohoku Math. J., 67, 297-321 (2015) ·Zbl 1326.32031 ·doi:10.2748/tmj/1435237045 |
[24] | Lazarsfeld, R.: Positivity in algebraic geometry I, classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 48. Springer, Berlin (2004) ·Zbl 1093.14501 |
[25] | Lazarsfeld, R.: Positivity in algebraic geometry II, positivity for vector bundles, and multiplier ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 49. Springer, Berlin (2004) ·Zbl 1093.14500 |
[26] | Li, C.: Geodesic rays and stability in the cscK problem, accepted by Annales Scientifiques de l’ENS. arXiv:2001.01366 |
[27] | Li, C., Xu, C.: Special test configurations and K-stability of Fano varieties. Ann. Math. 180(2), no.1, 197-232 (2014) ·Zbl 1301.14026 |
[28] | Matsumura, S., Restricted volumes and divisorial Zariski decomposition, Am. J. Math., 135, 637-662 (2013) ·Zbl 1277.14006 ·doi:10.1353/ajm.2013.0030 |
[29] | Odaka, Y., A generalization of the Ross-Thomas slope theory, Osaka J. Math., 50, 171-185 (2013) ·Zbl 1328.14073 |
[30] | Nakayama, N.: Zariski-decomposition and abundance. MSJ Memoirs, vol. 14. Mathematical Society of Japan, Tokyo (2004) ·Zbl 1061.14018 |
[31] | Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130, 239-265 (1997) ·Zbl 0892.53027 ·doi:10.1007/s002220050176 |
[32] | Tian, G.: K-stability implies CM-stability, Geometry, analysis and probability, 245-261, Progress in Mathematics, vol. 310. Birkhäuser, Springer, Cham (2017) ·Zbl 1376.32012 |
[33] | Tsuji, H., Pluricanonical systems of projective varieties of general type, I. Osaka J. Math., 43, 4, 967-995 (2006) ·Zbl 1142.14012 |
[34] | Wang, X., Heights and GIT weight, Math. Res. Lett., 19, 909-926 (2012) ·Zbl 1408.14147 ·doi:10.4310/MRL.2012.v19.n4.a14 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.