[1] | Brunat, O.; Malle, G., Characters of positive height in blocks of finite quasi-simple groups, Int. Math. Res. Not., 7763-7786, 2015 ·Zbl 1339.20007 |
[2] | Dolfi, S., Orbits of permutation groups on the power set, Arch. Math., 75, 321-327, 2000 ·Zbl 0978.20001 |
[3] | Eaton, C.; Moretó, A., Extending Brauer’s height zero conjecture to blocks with nonabelian defect groups, Int. Math. Res. Not., 5581-5601, 2014 ·Zbl 1348.20009 |
[4] | Enguehard, M., Sur les l-blocs unipotents des groupes réductifs finis quand l est mauvais, J. Algebra, 230, 334-377, 2000 ·Zbl 0964.20020 |
[5] | Espuelas, A., The existence of regular orbits, J. Algebra, 127, 259-268, 1989 ·Zbl 0654.20003 |
[6] | Feit, W., The Representation Theory of Finite Groups, North-Holland Mathematical Library, vol. 25, 1982, North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam-New York ·Zbl 0493.20007 |
[7] | Feng, Z.; Liu, Y.; Zhang, J., On heights of characters of finite groups, J. Algebra, 556, 106-135, 2020 ·Zbl 1481.20029 |
[8] | Geck, M.; Malle, G., The Character Theory of Finite Groups of Lie Type: A Guided Tour, 2020, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1536.20002 |
[9] | Giannelli, E.; Rizo, N.; Sambale, B.; Schaeffer Fry, A. A., Groups with few \(p^\prime \)-character degrees in the principal block, Proc. Am. Math. Soc., 148, 4597-4614, 2020 ·Zbl 1530.20040 |
[10] | Giudici, M.; Liebeck, M.; Praeger, C.; Saxl, J.; Tiep, P. H., Arithmetic results on orbits of linear groups, Trans. Am. Math. Soc., 368, 2415-2467, 2016 ·Zbl 1382.20003 |
[11] | Gluck, D., Trivial set-stabilizers in finite permutation groups, Can. J. Math., 35, 59-67, 1983 ·Zbl 0509.20002 |
[12] | Gluck, D.; Wolf, T. R., Brauer’s height conjecture for p-solvable groups, Trans. Am. Math. Soc., 282, 137-152, 1984 ·Zbl 0543.20007 |
[13] | Gorenstein, D.; Lyons, R.; Solomon, R., The Classification of the Finite Simple Groups. Number 3, Mathematical Surveys and Monographs, 1998, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0890.20012 |
[14] | Hering, C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Dedic., 2, 425-460, 1974 ·Zbl 0292.20045 |
[15] | Howlett, R. B., On the degrees of Steinberg characters of Chevalley groups, Math. Z., 135, 125-135, 1973-1974 ·Zbl 0261.20033 |
[16] | Humphreys, J. E., Defect groups for finite groups of Lie type, Math. Z., 119, 149-152, 1971 ·Zbl 0198.04502 |
[17] | Huppert, B., Endliche Gruppen I, 1967, Springer-Verlag: Springer-Verlag Berlin-New York ·Zbl 0217.07201 |
[18] | Huppert, B.; Blackburn, N., Finite Groups III, 1982, Springer-Verlag: Springer-Verlag Berlin-New York ·Zbl 0514.20002 |
[19] | Isaacs, I. M., Character Theory of Finite Groups, 2006, AMS Chelsea: AMS Chelsea Providence RI ·Zbl 1119.20005 |
[20] | James, G.; Kerber, A., The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and Its Applications, vol. 16, 1981, Addison-Wesley: Addison-Wesley Reading, Mass ·Zbl 0491.20010 |
[21] | Kessar, R.; Linckelmann, M.; Lynd, J.; Semeraro, J., Weight conjectures for fusion systems, Adv. Math., 357, 40pp, 2019 ·Zbl 1515.20063 |
[22] | Kessar, R.; Malle, G., Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. Math. (2), 178, 321-384, 2013 ·Zbl 1317.20006 |
[23] | Liebeck, M. W., The affine permutation groups of rank three, Proc. Lond. Math. Soc., 54, 477-516, 1987 ·Zbl 0621.20001 |
[24] | Malle, G., Extensions of unipotent characters and the inductive McKay condition, J. Algebra, 320, 2963-2980, 2008 ·Zbl 1163.20003 |
[25] | Malle, G.; Navarro, G., Brauer’s Height Zero Conjecture for principal blocks, J. Reine Angew. Math., 778, 119-125, 2021 ·Zbl 1542.20074 |
[26] | Malle, G.; Navarro, G., Height zero conjecture with Galois automorphisms, J. Lond. Math. Soc., 107, 548-567, 2023 ·Zbl 1522.20039 |
[27] | Malle, G.; Navarro, G.; Schaeffer Fry, A. A.; Tiep, P. H., Brauer’s height zero conjecture ·Zbl 07995677 |
[28] | Malle, G.; Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced Mathematics, vol. 133, 2011, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1256.20045 |
[29] | Manz, O.; Wolf, T. R., Representations of Solvable Groups, 1993, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0928.20008 |
[30] | Moretó, A.; Navarro, G., Heights of characters in blocks of p-solvable groups, Bull. Lond. Math. Soc., 37, 373-380, 2005 ·Zbl 1079.20012 |
[31] | Murai, M., Block induction, normal subgroups and characters of height zero, Osaka J. Math., 31, 9-25, 1994 ·Zbl 0830.20008 |
[32] | Navarro, G., Characters and Blocks of Finite Groups, 1998, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0903.20004 |
[33] | Navarro, G.; Tiep, P. H., Characters of relative \(p^\prime \)-degree over normal subgroups, Ann. Math. (2), 178, 1135-1171, 2013 ·Zbl 1372.20016 |
[34] | Rizo, N.; Schaeffer Fry, A. A.; Vallejo, C., Galois action on the principal block and cyclic Sylow subgroups, Algebra Number Theory, 14, 1953-1979, 2020 ·Zbl 1511.20034 |
[35] | Rizo, N.; Schaeffer Fry, A. A.; Vallejo, C., Principal blocks with 5 irreducible characters, J. Algebra, 585, 316-337, 2021 ·Zbl 1534.20009 |
[36] | Ruhstorfer, L., The Alperin-McKay conjecture for the prime 2 ·Zbl 1515.20071 |
[37] | Sambale, B., Blocks of Finite Groups and Their Invariants, Lecture Notes in Mathematics, vol. 2127, 2014, Springer: Springer Cham ·Zbl 1315.20009 |
[38] | Seress, A., The minimal base size of primitive solvable permutation groups, J. Lond. Math. Soc., 53, 243-255, 1996 ·Zbl 0854.20004 |
[39] | Taylor, J., Action of automorphisms on irreducible characters of symplectic groups, J. Algebra, 505, 211-246, 2018 ·Zbl 1436.20084 |
[40] | GAP - groups, algorithms, and programming, 2020, Version 4.11.0 |
[41] | Walter, J. H., The characterization of finite groups with Abelian Sylow 2-subgroups, Ann. Math. (2), 89, 405-514, 1969 ·Zbl 0184.04605 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.