Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Minimal heights and defect groups with two character degrees.(English)Zbl 1540.20028

The paper under review proves a particular case of a global-local conjecture in the modular representation theory of finite groups.C. Eaton andA. Moretó [Int. Math. Res. Not. 2014, No. 20, 5581–5601 (2014;Zbl 1348.20009)] conjectured that the minimal positive height \(\operatorname{mh}(B)\) of the irreducible characters in a \(p\)-block \(B\) equals the minimal positive height \(\operatorname{mh}(D)\) of the irreducible characters of its defect group \(D\). This is an extension of Brauer’s height zero conjecture (which was proved recently [the first author et al., “Brauer’s height zero conjecture”, Preprint,arXiv:2209.04736]). Eaton and Moretó [loc. cit] showed that the inequality \(\operatorname{mh}(D) \leq \operatorname{mh}(B)\) follows from Dade’s projective conjecture. In the paper under review, the other inequality \(\operatorname{mh}(B) \leq \operatorname{mh}(D)\) is shown for principal blocks \(B\) whose defect group \(D\) has exactly two character degrees. The proof uses the classification of finite simple groups and also the classification of finite linear groups in characteristic \(p\) and order divisible by \(p\), but with no orbits of size divisible by \(p\) [M. Giudici et al., Trans. Am. Math. Soc. 368, No. 4, 2415–2467 (2016;Zbl 1382.20003)].

MSC:

20C20 Modular representations and characters
20C15 Ordinary representations and characters
20C33 Representations of finite groups of Lie type

Software:

GAP

Cite

References:

[1]Brunat, O.; Malle, G., Characters of positive height in blocks of finite quasi-simple groups, Int. Math. Res. Not., 7763-7786, 2015 ·Zbl 1339.20007
[2]Dolfi, S., Orbits of permutation groups on the power set, Arch. Math., 75, 321-327, 2000 ·Zbl 0978.20001
[3]Eaton, C.; Moretó, A., Extending Brauer’s height zero conjecture to blocks with nonabelian defect groups, Int. Math. Res. Not., 5581-5601, 2014 ·Zbl 1348.20009
[4]Enguehard, M., Sur les l-blocs unipotents des groupes réductifs finis quand l est mauvais, J. Algebra, 230, 334-377, 2000 ·Zbl 0964.20020
[5]Espuelas, A., The existence of regular orbits, J. Algebra, 127, 259-268, 1989 ·Zbl 0654.20003
[6]Feit, W., The Representation Theory of Finite Groups, North-Holland Mathematical Library, vol. 25, 1982, North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam-New York ·Zbl 0493.20007
[7]Feng, Z.; Liu, Y.; Zhang, J., On heights of characters of finite groups, J. Algebra, 556, 106-135, 2020 ·Zbl 1481.20029
[8]Geck, M.; Malle, G., The Character Theory of Finite Groups of Lie Type: A Guided Tour, 2020, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1536.20002
[9]Giannelli, E.; Rizo, N.; Sambale, B.; Schaeffer Fry, A. A., Groups with few \(p^\prime \)-character degrees in the principal block, Proc. Am. Math. Soc., 148, 4597-4614, 2020 ·Zbl 1530.20040
[10]Giudici, M.; Liebeck, M.; Praeger, C.; Saxl, J.; Tiep, P. H., Arithmetic results on orbits of linear groups, Trans. Am. Math. Soc., 368, 2415-2467, 2016 ·Zbl 1382.20003
[11]Gluck, D., Trivial set-stabilizers in finite permutation groups, Can. J. Math., 35, 59-67, 1983 ·Zbl 0509.20002
[12]Gluck, D.; Wolf, T. R., Brauer’s height conjecture for p-solvable groups, Trans. Am. Math. Soc., 282, 137-152, 1984 ·Zbl 0543.20007
[13]Gorenstein, D.; Lyons, R.; Solomon, R., The Classification of the Finite Simple Groups. Number 3, Mathematical Surveys and Monographs, 1998, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0890.20012
[14]Hering, C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Dedic., 2, 425-460, 1974 ·Zbl 0292.20045
[15]Howlett, R. B., On the degrees of Steinberg characters of Chevalley groups, Math. Z., 135, 125-135, 1973-1974 ·Zbl 0261.20033
[16]Humphreys, J. E., Defect groups for finite groups of Lie type, Math. Z., 119, 149-152, 1971 ·Zbl 0198.04502
[17]Huppert, B., Endliche Gruppen I, 1967, Springer-Verlag: Springer-Verlag Berlin-New York ·Zbl 0217.07201
[18]Huppert, B.; Blackburn, N., Finite Groups III, 1982, Springer-Verlag: Springer-Verlag Berlin-New York ·Zbl 0514.20002
[19]Isaacs, I. M., Character Theory of Finite Groups, 2006, AMS Chelsea: AMS Chelsea Providence RI ·Zbl 1119.20005
[20]James, G.; Kerber, A., The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and Its Applications, vol. 16, 1981, Addison-Wesley: Addison-Wesley Reading, Mass ·Zbl 0491.20010
[21]Kessar, R.; Linckelmann, M.; Lynd, J.; Semeraro, J., Weight conjectures for fusion systems, Adv. Math., 357, 40pp, 2019 ·Zbl 1515.20063
[22]Kessar, R.; Malle, G., Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. Math. (2), 178, 321-384, 2013 ·Zbl 1317.20006
[23]Liebeck, M. W., The affine permutation groups of rank three, Proc. Lond. Math. Soc., 54, 477-516, 1987 ·Zbl 0621.20001
[24]Malle, G., Extensions of unipotent characters and the inductive McKay condition, J. Algebra, 320, 2963-2980, 2008 ·Zbl 1163.20003
[25]Malle, G.; Navarro, G., Brauer’s Height Zero Conjecture for principal blocks, J. Reine Angew. Math., 778, 119-125, 2021 ·Zbl 1542.20074
[26]Malle, G.; Navarro, G., Height zero conjecture with Galois automorphisms, J. Lond. Math. Soc., 107, 548-567, 2023 ·Zbl 1522.20039
[27]Malle, G.; Navarro, G.; Schaeffer Fry, A. A.; Tiep, P. H., Brauer’s height zero conjecture ·Zbl 07995677
[28]Malle, G.; Testerman, D., Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Studies in Advanced Mathematics, vol. 133, 2011, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1256.20045
[29]Manz, O.; Wolf, T. R., Representations of Solvable Groups, 1993, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0928.20008
[30]Moretó, A.; Navarro, G., Heights of characters in blocks of p-solvable groups, Bull. Lond. Math. Soc., 37, 373-380, 2005 ·Zbl 1079.20012
[31]Murai, M., Block induction, normal subgroups and characters of height zero, Osaka J. Math., 31, 9-25, 1994 ·Zbl 0830.20008
[32]Navarro, G., Characters and Blocks of Finite Groups, 1998, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0903.20004
[33]Navarro, G.; Tiep, P. H., Characters of relative \(p^\prime \)-degree over normal subgroups, Ann. Math. (2), 178, 1135-1171, 2013 ·Zbl 1372.20016
[34]Rizo, N.; Schaeffer Fry, A. A.; Vallejo, C., Galois action on the principal block and cyclic Sylow subgroups, Algebra Number Theory, 14, 1953-1979, 2020 ·Zbl 1511.20034
[35]Rizo, N.; Schaeffer Fry, A. A.; Vallejo, C., Principal blocks with 5 irreducible characters, J. Algebra, 585, 316-337, 2021 ·Zbl 1534.20009
[36]Ruhstorfer, L., The Alperin-McKay conjecture for the prime 2 ·Zbl 1515.20071
[37]Sambale, B., Blocks of Finite Groups and Their Invariants, Lecture Notes in Mathematics, vol. 2127, 2014, Springer: Springer Cham ·Zbl 1315.20009
[38]Seress, A., The minimal base size of primitive solvable permutation groups, J. Lond. Math. Soc., 53, 243-255, 1996 ·Zbl 0854.20004
[39]Taylor, J., Action of automorphisms on irreducible characters of symplectic groups, J. Algebra, 505, 211-246, 2018 ·Zbl 1436.20084
[40]GAP - groups, algorithms, and programming, 2020, Version 4.11.0
[41]Walter, J. H., The characterization of finite groups with Abelian Sylow 2-subgroups, Ann. Math. (2), 89, 405-514, 1969 ·Zbl 0184.04605
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp