Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Gray categories with duals and their diagrams.(English)Zbl 1540.18020

This paper aims to develop the theory of duals for Gray categories. The principal tool is the authors’ diagrammatic calculus, which can be viewed as a higher-categorical three-dimensional analogue of the diagrams used for computations in pivotal categories. Many of the algebraic results on Gray categories with duals can be understood in terms of the geometry of the corresponding diagrams.
The synopsis of the paper goes as follows.
§ 2
introduces diagrams for Gray categories without duals, which are a generalization of the diagrammic calculus for braided monoidal categories [A. Joyal andR. Street, Adv. Math. 88, No. 1, 55–112 (1991;Zbl 0738.18005)]. A braided monoidal category is to be viewed as a Gray category with a single object and 1-morphism. The evaluation of diagrams for braided monoidal categories is generalized to the evaluation of Gray category diagrams. It is shown (Theorem 2.32) that
Theorem. Let \(D\), \(D^{\prime}\)be generic Gray category diagrams that are isotopic by a one-parameter family of isomorphisms of progressive diagrams. Then the evaluations of \(D\)and \(D^{\prime}\)are equal.
§ 3
introduces Gray categories with duals, using the definition ofJ. C. Baez andL. Langford [Adv. Math. 180, No. 2, 705–764 (2003;Zbl 1039.57016)], but with some minor modifications. The Gray categories possess two types of duals, \(\ast\)and \(\#\), which correspond to 180 degree rotations around two distinct coordinate axes. The \(\ast\)-duals are familiar from pivotal or ribbon categories.
§ 4
is concerned with the algebraic structure of the duality operations, establishing the first main result (Theorem 4.3, Lemma 4.4 and Theorem 4.5).
Theorem. The duals extend in a canonical way to (partially contravariant) functors of 2-strict tricategories\[\ast,\#:\mathcal{G}\rightarrow\mathcal{G}\]with \(\ast\ast=1\), defining natural isomorphisms\begin{align*}\Gamma & :\ast\#\ast\#\rightarrow1\\\Theta & :\#\#\rightarrow1\end{align*}
§ 5
establishes the second main result (Theorems 5.2 and 5.3), which is a strictification theorem for the duals.
Theorem. Every spatial Gray category with duals can be strictified to a Gray category whose duals\[\ast,\#:\mathcal{G}\rightarrow\mathcal{G}\]abide by\begin{align*}\ast\ast & =1\\\#\# & =1\\\ast\#\ast\# & =1\end{align*}
§ 6
explores in more depth the relation between Gray categories with duals and their diagrams. The main theorem (Theorem 6.9) claims that the evaluations of standard surface diagrams are invariant under a set of moves that are the PL counterparts of the moves induced by projecting an isotropy in the smooth setting. Under the conjecture (Conjecture 6.8) that these are also all the moves arising from projecting PL isotropies, it implies that oriented isomorphisms of standard surface diagrams leave their evaluations invariant.
Appendix A
defines functors of strict tricategories and their natural transformations and modifications by specializing the standard definitions for functors of (strict) 2-categories [G. M. Kelly andR. Street, Lect. Notes Math. 420, 75–103 (1974;Zbl 0334.18016);T. Leinster, “Basic bicategories”, Preprint,arXiv:math/9810017].

MSC:

18N10 2-categories, bicategories, double categories
18M30 String diagrams and graphical calculi

Cite

References:

[1]Anderson, D. R.; Hsiang, W. C., Extending combinatorial piecewise linear structures on stratified spaces. II, Trans. Am. Math. Soc., 260, 223-253, 1980 ·Zbl 0455.57007
[2]Baez, J. C.; Langford, L., Higher-dimensional algebra. IV. 2-tangles, Adv. Math., 180, 2, 705-764, 2003 ·Zbl 1039.57016
[3]Barrett, J. W.; Westbury, B. W., Spherical categories, Adv. Math., 143, 2, 357-375, 1999 ·Zbl 0930.18004
[4]Bartlett, B., On unitary 2-representations of finite groups and topological quantum field theory, 2008, University of Sheffield, PhD thesis
[5]Carqueville, N.; Meusburger, C.; Schaumann, G., 3-dimensional defect TQFTs and their tricategories, Adv. Math., 364, Article 107024 pp., 2020 ·Zbl 1441.81125
[6]Cheng, E.; Gurski, N., The periodic table of n-categories for low dimensions I: degenerate categories and degenerate bicategories, (Batanin; etal., Categories in Algebra, Geometry and Mathematical Physics, Proceedings of Streetfest. Categories in Algebra, Geometry and Mathematical Physics, Proceedings of Streetfest, Contemporary Math. AMS, vol. 431, 2007), 143-164 ·Zbl 1142.18003
[7]Crans, S. E., A tensor product for Gray-categories, Theory Appl. Categ., 5, 2, 12-69, 1999 ·Zbl 0914.18006
[8]Freyd, P. J.; Yetter, D. N., Braided compact closed categories with applications to low-dimensional topology, Adv. Math., 77, 2, 156-182, 1989 ·Zbl 0679.57003
[9]Fuchs, J.; Schweigert, C.; Valentino, A., Bicategories for boundary conditions and for surface defects in 3-d TFT, Commun. Math. Phys., 321, 2, 543-575, 2013 ·Zbl 1269.81169
[10]Gordon, R.; Power, A. J.; Street, R., Coherence for tricategories, Mem. Am. Math. Soc., 117, 558, 1995, vi+81 pp ·Zbl 0836.18001
[11]Gray, J. W., Formal Category Theory: Adjointness for 2-Categories, Lecture Notes in Mathematics, vol. 391, 1974, Springer-Verlag: Springer-Verlag Berlin, New York, xii+282 pp ·Zbl 0285.18006
[12]Gurski, M. N., An algebraic theory of tricategories, 2006, University of Chicago, 209 pp
[13]Hamstrom, M.-E., Uniform PL approximations of isotopies and extending PL isotopies in low dimensions, Adv. Math., 19, 1, 6-18, 1976 ·Zbl 0318.57013
[14]Joyal, A.; Street, R., The geometry of tensor calculus I, Adv. Math., 88, 1, 55-112, 1991 ·Zbl 0738.18005
[15]Joyal, A.; Street, R., The geometry of tensor calculus II, Draft document
[16]Kamada, S., Braid and Knot Theory in Dimension Four, Mathematical Surveys and Monographs, vol. 95, 2002, American Mathematical Society: American Mathematical Society Providence, RI, xiv+313 pp ·Zbl 0993.57012
[17]Kapustin, A.; Saulina, N., Surface operators in 3d topological field theory and 2d rational conformal field theory, (Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proc. Sympos. Pure Math., vol. 83, 2011, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 175-198 ·Zbl 1248.81206
[18]Kapustin, A., Topological field theory, higher categories, and their applications, (Proceedings of the International Congress of Mathematicians, vol. III, 2010, Hindustan Book Agency: Hindustan Book Agency New Delhi), 2021-2043 ·Zbl 1233.57018
[19]Kauffman, L. H., An invariant of regular isotopy, Trans. Am. Math. Soc., 318, 2, 417-471, 1990 ·Zbl 0763.57004
[20]Kelly, G. M., Basic concepts of enriched category theory, (Reprints in Theory and Applications of Categories, vol. 10, 2005). (Reprints in Theory and Applications of Categories, vol. 10, 2005), London Mathematical Society Lecture Note Series, vol. 64, 245, 1982, Cambridge Univ. Press: Cambridge Univ. Press Cambridge, New York, Reprint of the original ·Zbl 0478.18005
[21]Kelly, G. M.; Laplaza, M. I., Coherence for compact closed categories, J. Pure Appl. Algebra, 19, 193-213, 1980 ·Zbl 0447.18005
[22]Kelly, G. M.; Street, R., Review of the elements of 2-categories, (Proceedings Sydney Category Theory Seminar 1972/1973. Proceedings Sydney Category Theory Seminar 1972/1973, Lecture Notes in Mathematics, vol. 420, 1974, Springer), 75-103 ·Zbl 0334.18016
[23]Kamps, K. H.; Porter, T., 2-groupoid enrichments in homotopy theory and algebra, K-Theory, 25, 4, 373-409, 2002 ·Zbl 1009.18007
[24]Kirillov, A.; Balsam, B., Turaev-viro invariants as an extended TQFT, 2010
[25]Leinster, T., Basic bicategories, 1998
[26]Lurie, J., On the classification of topological field theories, (Current Developments in Mathematics, 2008, 2009, Int. Press: Int. Press Somerville, MA), 129-280 ·Zbl 1180.81122
[27]MacDonald, J. L.; Stone, A., Soft adjunction between 2-categories, J. Pure Appl. Algebra, 60, 2, 155-203, 1989 ·Zbl 0686.18003
[28]Mackaay, M., Spherical 2-categories and 4-manifold invariants, Adv. Math., 143, 2, 288-348, 1999 ·Zbl 0946.57021
[29]Ng, S.-H.; Schauenburg, P., Higher Frobenius-Schur indicators for pivotal categories, Contemp. Math., 441, 63-90, 2007 ·Zbl 1153.18008
[30]Reshetikhin, N. Y.; Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., 127, 1, 1-26, 1990 ·Zbl 0768.57003
[31]Rourke, C. P.; Sanderson, B. J., Introduction to Piecewise-Linear Topology, 1982, Springer-Verlag: Springer-Verlag Berlin, New York, viii+123 pp ·Zbl 0477.57003
[32]Rushing, T. B., Topological Embeddings, Pure and Applied Mathematics, vol. 52, 1973, Academic Press: Academic Press New York, London ·Zbl 0295.57003
[33]Schaumann, G., Duals in tricategories and in the tricategory of bimodule categories, 2014, Friedrich-Alexander-Universität Erlangen-Nürnberg, PhD thesis
[34]Schommer-Pries, C. J., The classification of two-dimensional extended topological field theories, 2009, University of California: University of California Berkeley, 254 pp
[35]Scott Carter, J., An Excursion in Diagrammatic Algebra: Turning a Sphere from Red to Blue, 2012, World Scientific ·Zbl 1248.57001
[36]Street, R., Categorical structures, (Hazewinkel, M., Handbook of Algebra, vol. 1, 1996, Elsevier Science: Elsevier Science Amsterdam), 529-577 ·Zbl 0854.18001
[37]Trimble, T., Discussion on surface diagrams
[38]Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, 2010, Walter de Gruyter: Walter de Gruyter Berlin ·Zbl 1213.57002
[39]Turaev, V.; Virelizier, A., On two approaches to 3-dimensional TQFTs, 2010
[40]Whitney, H., On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane, Ann. Math. (2), 62, 3, 374-410, 1955 ·Zbl 0068.37101
[41]Yetter, D. N., Category theoretic representation of knotted graphs in \(S^3\), Adv. Math., 77, 2, 137-155, 1989 ·Zbl 0679.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp