Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the 4-dimensional minimal model program for Kähler varieties.(English)Zbl 1540.14029

As one of the most significant tools to classify algebraic or analytic varieties, the minimal model program (MMP for short) has been substantially developed for complex projective varieties during the last two decades (see [C. Birkar et al., J. Am. Math. Soc. 23, No. 2, 405–468 (2010;Zbl 1210.14019)]). It has also been well-understood for compact Kähler threefolds (see [A. Höring andT. Peternell, Invent. Math. 203, No. 1, 217–264 (2016;Zbl 1337.32031);F. Campana et al., Ann. Sci. Éc. Norm. Supér. (4) 49, No. 4, 971–1025 (2016;Zbl 1386.32020);O. Das andW. Ou, Manuscr. Math. 173, No. 1–2, 341–404 (2024;Zbl 1536.14012);O. Das andC. Hacon, “The log minimal model program for Kähler \(3\)-folds”, Preprint,arXiv:2009.05924]) while much less is known about Kähler varieties in higher dimension.
In the paper under review, the authors prove that the MMP holds for effective dlt Kähler 4-fold pairs and for (strongly) semistable families of 3-folds over curves (see Theorems 1.1 and 1.2). Besides, by studying the finite generation conjecture, the authors show the existence of flips for analytic varieties in all dimensions (see Theorem 1.3). The relative MMP for projective morphisms between analytic varieties has also been established (see Theorem 1.4). In [“Minimal model program for projective morphisms between complex analytic spaces”, Preprint,arXiv:2201.11315],O. Fujino obtains a similar result to Theorems 1.3 and 1.4 by using different approaches.

MSC:

14E05 Rational and birational maps
14E30 Minimal model program (Mori theory, extremal rays)
32Q57 Classification theorems for complex manifolds

Cite

References:

[1]Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J., Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 2, 405-468, 2010 ·Zbl 1210.14019
[2]Boucksom, S.; Guedj, V., Regularizing properties of the Kähler-Ricci flow, (An Introduction to the Kähler-Ricci Flow. An Introduction to the Kähler-Ricci Flow, Lecture Notes in Math., vol. 2086, 2013, Springer: Springer Cham), 189-237 ·Zbl 1283.53061
[3]Birkar, C., Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J., 136, 1, 173-180, 2007 ·Zbl 1109.14018
[4]Birkar, C., On existence of log minimal models, Compos. Math., 146, 4, 919-928, 2010 ·Zbl 1197.14011
[5]Bierstone, E.; Milman, P. D., Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128, 2, 207-302, 1997 ·Zbl 0896.14006
[6]Boucksom, S., Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér. (4), 37, 1, 45-76, 2004 ·Zbl 1054.32010
[7]Bănică, C.; Stănăşilă, O., Algebraic Methods in the Global Theory of Complex Spaces, 1976, Editura Academiei/John Wiley & Sons: Editura Academiei/John Wiley & Sons Bucharest/London-New York-Sydney, Translated from the Romanian ·Zbl 0334.32001
[8]Beltrametti, M. C.; Sommese, A. J., The Adjunction Theory of Complex Projective Varieties, De Gruyter Expositions in Mathematics, vol. 16, 1995, Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin ·Zbl 0845.14003
[9]Cao, J.; Höring, A., Rational curves on compact Kähler manifolds, J. Differ. Geom., 114, 1, 1-39, 2020 ·Zbl 1442.14055
[10]Campana, F.; Höring, A.; Peternell, T., Abundance for Kähler threefolds, Ann. Sci. Éc. Norm. Supér. (4), 49, 4, 971-1025, 2016 ·Zbl 1386.32020
[11]Cascini, P.; Lazic, V., New outlook on the minimal model program, I, Duke Math. J., 161, 12, 2415-2467, 2012 ·Zbl 1261.14007
[12]Corti, A.; Lazic, V., New outlook on the minimal model program, II, Math. Ann., 356, 2, 617-633, 2013 ·Zbl 1273.14033
[13]Collins, T. C.; Tosatti, V., Kähler currents and null loci, Invent. Math., 202, 3, 1167-1198, 2015 ·Zbl 1341.32016
[14]Collins, T. C.; Tosatti, V., A singular Demailly-Păun theorem, C. R. Math. Acad. Sci. Paris, 354, 1, 91-95, 2016 ·Zbl 1344.32005
[15]Debarre, O., Higher-Dimensional Algebraic Geometry, Universitext, 2001, Springer-Verlag: Springer-Verlag New York ·Zbl 0978.14001
[16]Demailly, J.-P., Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. Fr. (N. S.), 19, 124, 1985 ·Zbl 0579.32012
[17]Demailly, J.-P., Cohomology of q-convex spaces in top degrees, Math. Z., 204, 2, 283-295, 1990 ·Zbl 0682.32017
[18]Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409, 1992 ·Zbl 0777.32016
[19]Das, O.; Hacon, C., The log minimal model program for Kähler 3-folds, September 2020, arXiv e-prints
[20]Das, O.; Hacon, C., On the minimal model program for Kähler 3-folds, June 2023, arXiv e-prints
[21]Das, O.; Ou, W., On the log abundance for compact Kähler threefolds, Manuscr. Math., 173, 1-2, 341-404, 2024 ·Zbl 1536.14012
[22]Demailly, J.-P.; Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., 159, 3, 1247-1274, 2004 ·Zbl 1064.32019
[23]Fujiki, A., On the structure of compact complex manifolds in \(\mathcal{C} \), (Algebraic Varieties and Analytic Varieties. Algebraic Varieties and Analytic Varieties, Tokyo, 1981. Algebraic Varieties and Analytic Varieties. Algebraic Varieties and Analytic Varieties, Tokyo, 1981, Adv. Stud. Pure Math., vol. 1, 1983, North-Holland: North-Holland Amsterdam), 231-302 ·Zbl 0513.32027
[24]Fujino, O., A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math., 681, 149-174, 2013 ·Zbl 1285.32009
[25]Fujino, O., Some remarks on the minimal model program for log canonical pairs, J. Math. Sci. Univ. Tokyo, 22, 149-192, 2015 ·Zbl 1435.14017
[26]Fujino, O., ACC for log canonical thresholds for complex analytic spaces, August 2022, arXiv e-prints
[27]Fujino, O., Minimal Model Program for Projective Morphisms Between Complex Analytic Spaces, January 2022, arXiv e-prints
[28](Grauert, H.; Peternell, T.; Remmert, R., Several Complex Variables. VII. Several Complex Variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, 1994, Springer-Verlag: Springer-Verlag Berlin), Sheaf-theoretical methods in complex analysis. A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow ·Zbl 0793.00010
[29]Hartshorne, R., Algebraic Geometry, vol. 52, 1977, Springer-Verlag: Springer-Verlag New York-Heidelberg ·Zbl 0367.14001
[30]Hacon, C. D.; McKernan, J.; Xu, C., ACC for log canonical thresholds, Ann. Math., 180, 2, 523-571, 2014 ·Zbl 1320.14023
[31]Höring, A.; Peternell, T., Minimal models for Kähler threefolds, Invent. Math., 203, 1, 217-264, 2016 ·Zbl 1337.32031
[32]Höring, A.; Peternell, T., Bimeromorphic geometry of Kähler threefolds, (Algebraic Geometry: Salt Lake City 2015. Algebraic Geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, 2018, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 381-402 ·Zbl 1446.32013
[33]Kawamata, Y., On the length of an extremal rational curve, Invent. Math., 105, 3, 609-611, 1991 ·Zbl 0751.14007
[34]Kawamata, Y., On the extension problem of pluricanonical forms, (Algebraic Geometry: Hirzebruch 70. Algebraic Geometry: Hirzebruch 70, Warsaw, 1988. Algebraic Geometry: Hirzebruch 70. Algebraic Geometry: Hirzebruch 70, Warsaw, 1988, Contemp. Math., vol. 241, 1999, Amer. Math. Soc.: Amer. Math. Soc. Providence), 193-207 ·Zbl 0972.14005
[35]Kollár, J.; Kovács, S. J., Log canonical singularities are Du Bois, J. Am. Math. Soc., 23, 3, 791-813, 2010 ·Zbl 1202.14003
[36]Kollár, J.; Mori, S., Classification of three-dimensional flips, J. Am. Math. Soc., 5, 533-704, 1992 ·Zbl 0773.14004
[37]Kollár, J.; Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, 1998, Cambridge University Press: Cambridge University Press Cambridge, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original ·Zbl 0926.14003
[38]Kollár, J., Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, 1996, Springer-Verlag: Springer-Verlag Berlin
[39]Manaresi, M., Sard and Bertini type theorems for complex spaces, Ann. Mat. Pura Appl., 131, 4, 265-279, 1982 ·Zbl 0498.32013
[40]Nakayama, N., The lower semicontinuity of the plurigenera of complex varieties, (Algebraic Geometry. Algebraic Geometry, Sendai, 1985. Algebraic Geometry. Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, 1987, North-Holland: North-Holland Amsterdam), 551-590 ·Zbl 0649.14003
[41]Nakayama, N., Zariski-Decomposition and Abundance, MJS Memoirs, vol. 14, 2004 ·Zbl 1061.14018
[42]Nicolaescu, L. I., The co-area formula
[43]Paun, M., Relative critical exponents, non-vanishing and metrics with minimal singularities, Invent. Math., 187, 3, 195-258, 2012 ·Zbl 1251.32018
[44]Siu, Y. T., Noetherianness of rings of holomorphic functions on Stein compact series, Proc. Am. Math. Soc., 21, 438-489, 1969 ·Zbl 0175.37402
[45]Toma, M., Bounded sets of sheaves on Kähler manifolds, J. Reine Angew. Math., 710, 77-93, 2016 ·Zbl 1342.32010
[46]Toma, M., Bounded sets of sheaves on relative analytic spaces, Ann. Henri Lebesgue, 4, 1531-1563, 2021 ·Zbl 1487.32102
[47]Waldron, J., The LMMP for log canonical 3-folds in characteristic \(p > 5\), Nagoya Math. J., 230, 48-71, 2018 ·Zbl 1423.14113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp