[1] | Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J., Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 2, 405-468, 2010 ·Zbl 1210.14019 |
[2] | Boucksom, S.; Guedj, V., Regularizing properties of the Kähler-Ricci flow, (An Introduction to the Kähler-Ricci Flow. An Introduction to the Kähler-Ricci Flow, Lecture Notes in Math., vol. 2086, 2013, Springer: Springer Cham), 189-237 ·Zbl 1283.53061 |
[3] | Birkar, C., Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J., 136, 1, 173-180, 2007 ·Zbl 1109.14018 |
[4] | Birkar, C., On existence of log minimal models, Compos. Math., 146, 4, 919-928, 2010 ·Zbl 1197.14011 |
[5] | Bierstone, E.; Milman, P. D., Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., 128, 2, 207-302, 1997 ·Zbl 0896.14006 |
[6] | Boucksom, S., Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér. (4), 37, 1, 45-76, 2004 ·Zbl 1054.32010 |
[7] | Bănică, C.; Stănăşilă, O., Algebraic Methods in the Global Theory of Complex Spaces, 1976, Editura Academiei/John Wiley & Sons: Editura Academiei/John Wiley & Sons Bucharest/London-New York-Sydney, Translated from the Romanian ·Zbl 0334.32001 |
[8] | Beltrametti, M. C.; Sommese, A. J., The Adjunction Theory of Complex Projective Varieties, De Gruyter Expositions in Mathematics, vol. 16, 1995, Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin ·Zbl 0845.14003 |
[9] | Cao, J.; Höring, A., Rational curves on compact Kähler manifolds, J. Differ. Geom., 114, 1, 1-39, 2020 ·Zbl 1442.14055 |
[10] | Campana, F.; Höring, A.; Peternell, T., Abundance for Kähler threefolds, Ann. Sci. Éc. Norm. Supér. (4), 49, 4, 971-1025, 2016 ·Zbl 1386.32020 |
[11] | Cascini, P.; Lazic, V., New outlook on the minimal model program, I, Duke Math. J., 161, 12, 2415-2467, 2012 ·Zbl 1261.14007 |
[12] | Corti, A.; Lazic, V., New outlook on the minimal model program, II, Math. Ann., 356, 2, 617-633, 2013 ·Zbl 1273.14033 |
[13] | Collins, T. C.; Tosatti, V., Kähler currents and null loci, Invent. Math., 202, 3, 1167-1198, 2015 ·Zbl 1341.32016 |
[14] | Collins, T. C.; Tosatti, V., A singular Demailly-Păun theorem, C. R. Math. Acad. Sci. Paris, 354, 1, 91-95, 2016 ·Zbl 1344.32005 |
[15] | Debarre, O., Higher-Dimensional Algebraic Geometry, Universitext, 2001, Springer-Verlag: Springer-Verlag New York ·Zbl 0978.14001 |
[16] | Demailly, J.-P., Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. Fr. (N. S.), 19, 124, 1985 ·Zbl 0579.32012 |
[17] | Demailly, J.-P., Cohomology of q-convex spaces in top degrees, Math. Z., 204, 2, 283-295, 1990 ·Zbl 0682.32017 |
[18] | Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409, 1992 ·Zbl 0777.32016 |
[19] | Das, O.; Hacon, C., The log minimal model program for Kähler 3-folds, September 2020, arXiv e-prints |
[20] | Das, O.; Hacon, C., On the minimal model program for Kähler 3-folds, June 2023, arXiv e-prints |
[21] | Das, O.; Ou, W., On the log abundance for compact Kähler threefolds, Manuscr. Math., 173, 1-2, 341-404, 2024 ·Zbl 1536.14012 |
[22] | Demailly, J.-P.; Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., 159, 3, 1247-1274, 2004 ·Zbl 1064.32019 |
[23] | Fujiki, A., On the structure of compact complex manifolds in \(\mathcal{C} \), (Algebraic Varieties and Analytic Varieties. Algebraic Varieties and Analytic Varieties, Tokyo, 1981. Algebraic Varieties and Analytic Varieties. Algebraic Varieties and Analytic Varieties, Tokyo, 1981, Adv. Stud. Pure Math., vol. 1, 1983, North-Holland: North-Holland Amsterdam), 231-302 ·Zbl 0513.32027 |
[24] | Fujino, O., A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math., 681, 149-174, 2013 ·Zbl 1285.32009 |
[25] | Fujino, O., Some remarks on the minimal model program for log canonical pairs, J. Math. Sci. Univ. Tokyo, 22, 149-192, 2015 ·Zbl 1435.14017 |
[26] | Fujino, O., ACC for log canonical thresholds for complex analytic spaces, August 2022, arXiv e-prints |
[27] | Fujino, O., Minimal Model Program for Projective Morphisms Between Complex Analytic Spaces, January 2022, arXiv e-prints |
[28] | (Grauert, H.; Peternell, T.; Remmert, R., Several Complex Variables. VII. Several Complex Variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, 1994, Springer-Verlag: Springer-Verlag Berlin), Sheaf-theoretical methods in complex analysis. A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow ·Zbl 0793.00010 |
[29] | Hartshorne, R., Algebraic Geometry, vol. 52, 1977, Springer-Verlag: Springer-Verlag New York-Heidelberg ·Zbl 0367.14001 |
[30] | Hacon, C. D.; McKernan, J.; Xu, C., ACC for log canonical thresholds, Ann. Math., 180, 2, 523-571, 2014 ·Zbl 1320.14023 |
[31] | Höring, A.; Peternell, T., Minimal models for Kähler threefolds, Invent. Math., 203, 1, 217-264, 2016 ·Zbl 1337.32031 |
[32] | Höring, A.; Peternell, T., Bimeromorphic geometry of Kähler threefolds, (Algebraic Geometry: Salt Lake City 2015. Algebraic Geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, 2018, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 381-402 ·Zbl 1446.32013 |
[33] | Kawamata, Y., On the length of an extremal rational curve, Invent. Math., 105, 3, 609-611, 1991 ·Zbl 0751.14007 |
[34] | Kawamata, Y., On the extension problem of pluricanonical forms, (Algebraic Geometry: Hirzebruch 70. Algebraic Geometry: Hirzebruch 70, Warsaw, 1988. Algebraic Geometry: Hirzebruch 70. Algebraic Geometry: Hirzebruch 70, Warsaw, 1988, Contemp. Math., vol. 241, 1999, Amer. Math. Soc.: Amer. Math. Soc. Providence), 193-207 ·Zbl 0972.14005 |
[35] | Kollár, J.; Kovács, S. J., Log canonical singularities are Du Bois, J. Am. Math. Soc., 23, 3, 791-813, 2010 ·Zbl 1202.14003 |
[36] | Kollár, J.; Mori, S., Classification of three-dimensional flips, J. Am. Math. Soc., 5, 533-704, 1992 ·Zbl 0773.14004 |
[37] | Kollár, J.; Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134, 1998, Cambridge University Press: Cambridge University Press Cambridge, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original ·Zbl 0926.14003 |
[38] | Kollár, J., Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, 1996, Springer-Verlag: Springer-Verlag Berlin |
[39] | Manaresi, M., Sard and Bertini type theorems for complex spaces, Ann. Mat. Pura Appl., 131, 4, 265-279, 1982 ·Zbl 0498.32013 |
[40] | Nakayama, N., The lower semicontinuity of the plurigenera of complex varieties, (Algebraic Geometry. Algebraic Geometry, Sendai, 1985. Algebraic Geometry. Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, 1987, North-Holland: North-Holland Amsterdam), 551-590 ·Zbl 0649.14003 |
[41] | Nakayama, N., Zariski-Decomposition and Abundance, MJS Memoirs, vol. 14, 2004 ·Zbl 1061.14018 |
[42] | Nicolaescu, L. I., The co-area formula |
[43] | Paun, M., Relative critical exponents, non-vanishing and metrics with minimal singularities, Invent. Math., 187, 3, 195-258, 2012 ·Zbl 1251.32018 |
[44] | Siu, Y. T., Noetherianness of rings of holomorphic functions on Stein compact series, Proc. Am. Math. Soc., 21, 438-489, 1969 ·Zbl 0175.37402 |
[45] | Toma, M., Bounded sets of sheaves on Kähler manifolds, J. Reine Angew. Math., 710, 77-93, 2016 ·Zbl 1342.32010 |
[46] | Toma, M., Bounded sets of sheaves on relative analytic spaces, Ann. Henri Lebesgue, 4, 1531-1563, 2021 ·Zbl 1487.32102 |
[47] | Waldron, J., The LMMP for log canonical 3-folds in characteristic \(p > 5\), Nagoya Math. J., 230, 48-71, 2018 ·Zbl 1423.14113 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.