Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Tropical and non-Archimedean Monge-Ampère equations for a class of Calabi-Yau hypersurfaces.(English)Zbl 1539.14077

The principal motivation of this paper is the Strominger-Yau-Zaslow conjecture, which concerns finding a special Lagrangian torus fibration on the generic region of Calabi-Yau manifolds closed to the large complex structure limit. The main challenge is to understand the limiting behaviour of the Calabi-Yau metrics, and it is generally expected that the potentially theoretic limit of the Calabi-Yau metric is a solution to the real Monge-Ampère equation on the essential skeleton associated to the degeneration family. However, formulating this real Monge-Ampère equation is challenging, because the essential skeleton is a priori only a simplicial complex, where the real Monge-Ampère equation cannot be defined in the classical way.
The main contribution of this paper is to introduce a variational perspective for the Kontorovich functional, which is motivated from optimal transport theory. In a highly symmetric case, the authors show that this perspective provides the desirable properties of the real Monge-Ampère equation. They also provide a number of pathological examples when the symmetry is not satisfied. As applications of their main results, they recover the known results about the Strominger-Yau-Zaslow conjecture in the Fermat hypersurface case, and show that their solution reproduces the solution to the non-archimedean Monge-Ampère equation.

MSC:

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J33 Mirror symmetry (algebro-geometric aspects)
32P05 Non-Archimedean analysis
32Q25 Calabi-Yau theory (complex-analytic aspects)
53A15 Affine differential geometry
05E14 Combinatorial aspects of algebraic geometry
14T90 Applications of tropical geometry

Cite

References:

[1]Ambrosio, L.; Gigli, N., A user’s guide to optimal transport, (Modelling and Optimisation of Flows on Networks. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, vol. 2062 (2013), Springer-Verlag Berlin Heidelberg)
[2]Andreasson, R.; Hultgren, J., Solvability of Monge-Ampère equations and tropical affine structures on reflexive polytopes
[3]Berman, R. J.; Berndtsson, B., Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse, 22, 649-711 (2013) ·Zbl 1283.58013
[4]Berman, R. J.; Boucksom, B., Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181, 337-394 (2010) ·Zbl 1208.32020
[5]Berman, R. J.; Boucksom, S.; Guedj, V.; Zeriahi, A., A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci., 117, 179-245 (2013) ·Zbl 1277.32049
[6]Boucksom, S.; Eriksson, D., Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., 378, Article 107501 pp. (2021) ·Zbl 1460.32044
[7]Boucksom, S.; Favre, C.; Jonsson, M., Solution to a non-Archimedean Monge-Ampère equation, J. Am. Math. Soc., 28, 617-667 (2015) ·Zbl 1325.32021
[8]Boucksom, S.; Jonsson, M., Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech. Math., 4, 87-139 (2017) ·Zbl 1401.32019
[9]Boucksom, S.; Jonsson, M., Singular semipositive metrics on line bundles on varieties over trivially valued fields
[10]Burgos Gil, J. I.; Gubler, W.; Jell, P.; Künnemann, K.; Martin, F., Differentiability of non-Archimedean volumes and non-Archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld), Algebr. Geom., 7, 113-152 (2020) ·Zbl 1457.32056
[11]Burgos Gil, J. I.; Gubler, W.; Jell, P.; Künnemann, K.; Martin, F., Pluripotential theory for tropical toric varieties and non-Archimedean Monge-Ampère equations ·Zbl 07973991
[12]Burgos Gil, J. I.; Philippon, P.; Sombra, M., Arithmetic Geometry of Toric Varieties. Metrics, Measures, and Heights, Astérisque, vol. 360 (2014) ·Zbl 1311.14050
[13]Caffarelli, L. A., The regularity of mappings with a convex potential, J. Am. Math. Soc., 5, 99-104 (1992) ·Zbl 0753.35031
[14]Chambert-Loir, A., Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., 595, 215-235 (2006) ·Zbl 1112.14022
[15]Chambert-Loir, A.; Ducros, A., Formes différentielles réelles et courants sur les espaces de Berkovich
[16]Cheng, S. Y.; Yau, S.-T., The real Monge-Ampère equation and affine flat structures, (Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol. 1, 2, 3. Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol. 1, 2, 3, Beijing, 1980 (1982), Sci. Press Beijing: Sci. Press Beijing Beijing), 339-370 ·Zbl 0517.35020
[17]Collins, T.; Jacob, A.; Lin, Y.-S., Special Lagrangian tori in log Calabi-Yau manifolds, Duke Math. J., 170, 7, 1291-1375 (May 15, 2021) ·Zbl 1479.14046
[18]Collins, T.; Tosatti, V., An extension theorem for Kähler currents with analytic singularities, Ann. Fac. Sci. Toulouse Math. (6), 23, 4, 893-905 (2014) ·Zbl 1333.32023
[19]Coman, D.; Guedj, V.; Zeriahi, A., Extension of plurisubharmonic functions with growth control, J. Reine Angew. Math., 676, 33-49 (2013) ·Zbl 1269.32018
[20]Coman, D.; Guedj, V.; Zeriahi, A., On the extension of quasiplurisubharmonic functions, Anal. Math., 48, 411-426 (2022) ·Zbl 1513.32046
[21]Cox, D. A.; Little, J. B.; Schenck, H. K., Toric Varieties, vol. 124 (2011), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1223.14001
[22]Delanoë, P., Remarques sur les varietés localement Hessiennes, Osaka J. Math., 26, 65-69 (1989) ·Zbl 0754.53021
[23]Figalli, A., The Monge-Ampère Equation and Its Applications, Zürich Lectures in Advanced Mathematics (2017), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich ·Zbl 1435.35003
[24]Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. (1999), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York ·Zbl 0924.28001
[25]Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131 (1993), Princeton University Press: Princeton University Press Princeton, NJ ·Zbl 0813.14039
[26]Goto, K., On the two types of affine structures for degenerating Kummer surfaces: non-Archimedean vs Gromov-Hausdorff limits ·Zbl 1523.14015
[27]Goto, K.; Odaka, Y., Special Lagrangian fibrations, Berkovich retraction, and crystallographic groups ·Zbl 1537.81065
[28]Gross, M., Mirror symmetry and the Strominger-Yau-Zaslow conjecture, (Current Developments in Mathematics 2012 (2013), Int. Press: Int. Press Somerville, MA), 133-191 ·Zbl 1294.14015
[29]Gross, M.; Siebert, B., Mirror symmetry via logarithmic degeneration data I, J. Differ. Geom., 72, 169-338 (2006) ·Zbl 1107.14029
[30]Gross, M.; Wilson, B., Large complex structure limits of K3 surfaces, J. Differ. Geom., 55, 475-546 (2000) ·Zbl 1027.32021
[31]Gross, M.; Tosatti, V.; Zhang, Y., Collapsing of abelian fibered Calabi-Yau manifolds, Duke Math. J., 162, 517-551 (2013) ·Zbl 1276.32020
[32]Gross, M.; Tosatti, V.; Zhang, Y., Gromov-Hausdorff collapsing of Calabi-Yau manifolds, Commun. Anal. Geom., 24, 93-113 (2016) ·Zbl 1360.14105
[33]Gubler, W., Local heights of subvarieties over non-Archimedean fields, J. Reine Angew. Math., 498, 61-113 (1998) ·Zbl 0906.14013
[34]Gubler, W., Tropical varieties for non-Archimedean analytic spaces, Invent. Math., 169, 321-376 (2007) ·Zbl 1153.14036
[35]Guedj, V.; Tô, T. D., Monge-Ampère equations on compact Hessian manifolds, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. ·Zbl 1551.35242
[36]Hultgren, J.; Önnheim, M., An optimal transport approach to Monge-Ampère equations on compact Hessian manifolds, J. Geom. Anal., 29, 1953-1990 (2019) ·Zbl 1421.53049
[37]Hörmander, L., Notions of Convexity, Progress in Mathematics, vol. 127 (1994), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA ·Zbl 0835.32001
[38]Kollár, J., Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics, vol. 200 (2013), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1282.14028
[39]Kontsevich, M.; Soibelman, Y., Affine structures and non-Archimedean analytic spaces, (The Unity of Mathematics. The Unity of Mathematics, Progr. Math., vol. 244 (2006), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 321-385 ·Zbl 1114.14027
[40]Li, Y., Metric SYZ conjecture and non-Archimedean geometry ·Zbl 1532.32019
[41]Li, Y., Strominger-Yau-Zaslow conjecture for Calabi-Yau hypersurfaces in the Fermat family, Acta Math., 229, 1-53 (2022) ·Zbl 1508.14042
[42]Li, Y., Survey on the metric SYZ conjecture and non-Archimedean geometry
[43]Li, Y., Metric SYZ conjecture for certain toric Fano hypersurfaces ·Zbl 1548.14133
[44]Li, Y.; Tosatti, V., Diameter bounds for degenerating Calabi-Yau metrics, to appear in J. Differ. Geom. ·Zbl 07871771
[45]Maclagan, D.; Sturmfels, B., Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161 (2015), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1321.14048
[46]C.Y. Mak, D. Matessi, H. Ruddat, I. Zharkov, Lagrangian Strominger-Yau-Zaslow fibrations, in preparation.
[47]Mooney, C., Partial regularity for singular solutions to the Monge-Ampère equation, Commun. Pure Appl. Math., 68, 1066-1084 (2015) ·Zbl 1317.35079
[48]Mooney, C., Solutions to the Monge-Ampère equation with polyhedral and Y-shaped singularities, J. Geom. Anal., 31, 9509-9526 (2021) ·Zbl 1535.35106
[49]Mooney, C.; Rakshit, A., Singular structures in solutions to the Monge-Ampère equations with point masses, Math. Eng., 5 (2023), Paper No. 083 ·Zbl 1539.35127
[50]Mustaţǎ, M.; Nicaise, J., Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton, Algebr. Geom., 2, 365-404 (2015) ·Zbl 1322.14044
[51]Mazzon, E.; Pille-Schneider, L., Toric geometry and integral affine structures in non-Archimedean mirror symmetry
[52]Nicaise, J.; Xu, C., The essential skeleton of a degeneration of algebraic varieties, Am. J. Math., 138, 1645-1667 (2016) ·Zbl 1375.14092
[53]Nicaise, J.; Xu, C.; Yu, T. Y., The non-Archimedean SYZ fibration, Compos. Math., 155, 953-972 (2019) ·Zbl 1420.14093
[54]Ning, J.; Wang, Z.; Zhou, X., On the extension of Kähler currents on compact Kähler manifolds: holomorphic retraction case ·Zbl 1550.32062
[55]Odaka, Y., Degenerated Calabi-Yau varieties with infinite components, moduli compactifications, and limit toroidal structures ·Zbl 1509.14076
[56]Odaka, Y.; Oshima, Y., Collapsing K3 Surfaces, Tropical Geometry and Moduli Compactifications of Satake, Morgan-Shalen Type, MSJ Memoirs, vol. 40 (2021), Mathematical Society of Japan: Mathematical Society of Japan Tokyo ·Zbl 1474.14064
[57]Pille-Schneider, L., Hybrid toric varieties and the non-Archimedean SYZ fibration on Calabi-Yau hypersurfaces
[58]Ruddat, H.; Siebert, B., Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations, Publ. Math. Inst. Hautes Études Sci., 132, 1-82 (2020) ·Zbl 1454.14110
[59]H. Ruddat, I. Zharkov, Topological Strominger-Yau-Zaslow fibrations, in preparation. ·Zbl 1484.14020
[60]Strominger, A.; Yau, S.-T.; Zaslow, E., Mirror symmetry is T-duality, Nucl. Phys. B, 479, 243-259 (1996) ·Zbl 0896.14024
[61]Vilsmeier, C., A comparison of the real and non-Archimedean Monge-Ampère operator, Math. Z., 297, 633-668 (2021) ·Zbl 1457.32057
[62]Wang, Z.; Zhou, X., On the extension of Kähler currents on compact Kähler manifolds
[63]Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Commun. Pure Appl. Math., 31, 339-411 (1978) ·Zbl 0369.53059
[64]Yuan, X.; Zhang, S.-W., The arithmetic Hodge index theorem for adelic line bundles, Math. Ann., 367, 1123-1171 (2017) ·Zbl 1372.14017
[65]Zhang, S.-W., Positive line bundles on arithmetic varieties, J. Am. Math. Soc., 8, 187-221 (1995) ·Zbl 0861.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp