[1] | Alexeev, V., P. Engel, and A. Thompson. “Stable pair compactification of moduli of K3 surfaces of degree 2.” (forthcoming) arXiv:1903.09742. |
[2] | Ash, A., D. Mumford, M. Rapoport, and Y. Tai. Smooth Compactification of Locally Symmetric Varieties. Brookline: Math. Science Press, 1975. ·Zbl 0334.14007 |
[3] | Hybrid SYZ Fibration and Nuclear Physics Binite Symmetries 1683 |
[4] | Berkovich, V. “Smooth p-adic analytic spaces are locally contractible.” Invent. Math. 137 (1999): 1-84. https://doi.org/10.1007/s002220050323. ·Zbl 0930.32016 ·doi:10.1007/s002220050323 |
[5] | Berkovich, V. “A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures in Algebra.” InArithmetic and Geometry. Volume I: In Honor of Y.I. Manin, 49-67. Progress in Mathematics 269. Boston: Birkhäuser, 2010. ·Zbl 1195.14014 |
[6] | Birkenhake, C. and H. Lange. Complex Abelian Varieties. Die Grundlehren der mathema-tischen Wissenschaften 302. New York: Springer, 2004. https://doi.org/10.1007/978-3-662-06307-1. ·doi:10.1007/978-3-662-06307-1 |
[7] | Boucksom, S., C. Favre, and M. Jonsson. “Solution to a non-Archimedean Monge-Amp”ere equation.” J. Amer. Math. Soc. 28 (2014): 617-67. https://doi.org/10.1090/S0894-0347-2014-00806-7. ·Zbl 1325.32021 ·doi:10.1090/S0894-0347-2014-00806-7 |
[8] | Boucksom, S. and M. Jonsson. “Tropical and non-Archimedean limits of degenerating families of volume forms.” J. Ec. Polytech. Math. 4 (2017): 87-139. https://doi.org/10.5802/jep.39. ·Zbl 1401.32019 ·doi:10.5802/jep.39 |
[9] | Brown, M. and E. Mazzon. “The essential skeleton of a product of degenerations.” Compositio Math. 155 (2019): 1259-300. ·Zbl 1440.14131 |
[10] | Faltings, G. and C.-L. Chai. Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 22. New York: Springer, 1990. https://doi.org/10.1007/978-3-662-02632-8. ·Zbl 0744.14031 ·doi:10.1007/978-3-662-02632-8 |
[11] | Fujiki, A. “Finite automorphism groups of complex tori of dimension two.” Publ. R. I. M. S. 24, no. 1 (1988): 1-97. ·Zbl 0654.32015 |
[12] | Goldman, W. and M. W. Hirsch. “The radiance obstruction and parallel forms on affine manifolds.” Trans. Amer. Math. Soc. 286, no. 2 (1984): 629-49. https://doi.org/10.1090/S0002-9947-1984-0760977-7. ·Zbl 0561.57014 ·doi:10.1090/S0002-9947-1984-0760977-7 |
[13] | Goto, K. “On the two types of Affine structures for degenerating Kummer surfaces non-Archimedean vs Gromov-Hausdorff limits.” arXiv:2203.14543. |
[14] | Gross, M. “Mirror symmetry and the Strominger-Yau-Zaslow conjecture.” Curr. Dev. Math. 2012 (2012): 133-91. https://doi.org/10.4310/CDM.2012.v2012.n1.a3. ·Zbl 1294.14015 ·doi:10.4310/CDM.2012.v2012.n1.a3 |
[15] | Gross, M. and B. Siebert. “Mirror symmetry via logarithmic degeneration data I.” J. Diff. Geom. 72, no. 2 (2006): 169-338. ·Zbl 1107.14029 |
[16] | Gubler, W. “Tropical varieties for non-archimedean analytic spaces.” Inv. Math. 169 (2007): 321-76. https://doi.org/10.1007/s00222-007-0048-z. ·Zbl 1153.14036 ·doi:10.1007/s00222-007-0048-z |
[17] | Gubler, W. “Non-archimedean canonical measures on abelian varieties.” Compositio Math. 146 (2010): 683-730. https://doi.org/10.1112/S0010437X09004679. ·Zbl 1192.14021 ·doi:10.1112/S0010437X09004679 |
[18] | Hitchin, N. “The moduli space of special Lagrangian submanifolds.” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997): 503-15. ·Zbl 1015.32022 |
[19] | Harvey, R. and H. B. Lawson. “Calibrated geometries.” Acta Math. 148 (1982): 47-157. https:// doi.org/10.1007/BF02392726. ·Zbl 0584.53021 ·doi:10.1007/BF02392726 |
[20] | Hodge, W. V. D. The Theory and Applications of Harmonic Integrals. New York, Macmillan: Cambridge University Press, 1941. ·Zbl 0024.39703 |
[21] | Huybrechts, D. Lectures on K3 Surfaces. Cambridge Studies in Advanced Mathematics 158. Cambridge: Cambridge University Press, 2016. 1684 K. Goto and Y. Odaka |
[22] | Künnemann, K. “Projective regular models for abelian varieties, semistable reduction, and the height pairing.” Duke Math. J. 95 (1998): 161-212. https://doi.org/10.1215/S0012-7094-98-09505-9. ·Zbl 0955.14017 ·doi:10.1215/S0012-7094-98-09505-9 |
[23] | Kontsevich, M. and Y. Soibelman. Affine Structures and Non-Archimedean Analytic Spaces. Progr. Math. 244. 321-85. Birkhäuser: Springer, 2006. ·Zbl 1114.14027 |
[24] | Li, Y. “Metric SYZ conjecture and non-archimedean geometry.” Internat. J. Modern Phys. A 37, no. 17 (2022): 44 pp. |
[25] | Liu, Y. “A non-archimedean analogue of Calabi-Yau theorem for totally degenerate abelian varieties.” J. Diff. Geom. 89 (2011): 87-110. ·Zbl 1254.14026 |
[26] | Moret-Bailly, L. “Métriques permises, Séminaire sur les pinceaux arithmétiques: La Conjec-ture de Mordell.” Astérisque 127 (1985): 29-87. ·Zbl 1182.11028 |
[27] | Matsumoto, Y. “Degeneration of K3 surfaces with non-symplectic automorphisms.” Rend. Semin. Mat. Univ. Padova. ·Zbl 1539.14074 |
[28] | Morgan, J. and P. Shalen. “Valuations, trees, and degenerations of hyperbolic structures, I.” Ann. of Math. (2) 120 (1984): 401-76. ·Zbl 0583.57005 |
[29] | Mumford, D. Abelian Varieties. Tata Institute of Fundamental Research Studiesin Mathemat-ics, No. 5 Published for the Tata Institute of Fundamental Research. London, Bombay: Oxford University Press, 1970, viii+242. ·Zbl 0223.14022 |
[30] | Mumford, D. “An analytic construction of degenerating abelian varieties over complete rings.” Compositio Math. 24, no. 3 (1972): 239-72. ·Zbl 0241.14020 |
[31] | Mitsui, K. and I. Nakamura. “Relative compactifications of semiabelian Néron models.” (forthcoming) arXiv:2201.08113 |
[32] | Nicaise, J., C. Xu, and T. Yu. “The non-archimedean SYZ fibration.” Compos. Math. 155, no. 5 (2019): 953-72. ·Zbl 1420.14093 |
[33] | Odaka, Y. “Tropical geometric compactification of moduli, II: A g case and holomorphic limits.” I. M. R. N. 2019, no. 21: 6614-60. ·Zbl 1431.14050 |
[34] | Odaka, Y. and Y. Oshima. Collapsing K3 Surfaces, Tropical Geometry and Moduli Compact-ifications of Satake, Morgan-Shalen Type. MSJ Memoir 40. Tokyo: Math Society of Japan, 2021. ·Zbl 1474.14064 |
[35] | Odaka, Y. “Degenerated Calabi-Yau varieties with infinite components, Moduli compactifica-tions, and limit toroidal structures.” Eur. J. Math. 8, no. 3 (2022): 1105-57. ·Zbl 1509.14076 |
[36] | Odaka, Y.An unpublished note. |
[37] | Overkamp, O. “Degeneration of Kummer surfaces.” Math. Proc. Camb. Phil. Soc. 171 (2021): 65-97. https://doi.org/10.1017/S0305004120000067. ·Zbl 1483.14044 ·doi:10.1017/S0305004120000067 |
[38] | PilleSchneider, L. “Global pluripotential theory on hybrid spaces.” arXiv:2209.04879. |
[39] | Strominger, A., S.-T. Yau, and E. Zaslow. “Mirror symmetry is T-duality.” Nucl. Phys. B 479, no. 1-2 (1996): 243-59. https://doi.org/10.1016/0550-3213(96)00434-8. ·Zbl 0896.14024 ·doi:10.1016/0550-3213(96)00434-8 |