Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Special Lagrangian fibrations, Berkovich retraction, and crystallographic groups.(English)Zbl 1537.81065

Summary: We explicitly construct special Lagrangian fibrations on finite quotients of maximally degenerating abelian varieties and glue these to the Berkovich retraction to form a “hybrid” fibration. We also study their symmetries explicitly that can be regarded as crystallographic groups. In particular, a conjecture of Kontsevich-Soibelman [Y. Liu, J. Differ. Geom. 89, No. 1, 87–110 (2011;Zbl 1254.14026), Conjecture 3] is solved at an enhanced level for finite quotients of abelian varieties in any dimension.

MSC:

81P68 Quantum computation
70H03 Lagrange’s equations
14D10 Arithmetic ground fields (finite, local, global) and families or fibrations
14L30 Group actions on varieties or schemes (quotients)
20H15 Other geometric groups, including crystallographic groups
14K05 Algebraic theory of abelian varieties

Citations:

Zbl 1254.14026

Cite

References:

[1]Alexeev, V., P. Engel, and A. Thompson. “Stable pair compactification of moduli of K3 surfaces of degree 2.” (forthcoming) arXiv:1903.09742.
[2]Ash, A., D. Mumford, M. Rapoport, and Y. Tai. Smooth Compactification of Locally Symmetric Varieties. Brookline: Math. Science Press, 1975. ·Zbl 0334.14007
[3]Hybrid SYZ Fibration and Nuclear Physics Binite Symmetries 1683
[4]Berkovich, V. “Smooth p-adic analytic spaces are locally contractible.” Invent. Math. 137 (1999): 1-84. https://doi.org/10.1007/s002220050323. ·Zbl 0930.32016 ·doi:10.1007/s002220050323
[5]Berkovich, V. “A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures in Algebra.” InArithmetic and Geometry. Volume I: In Honor of Y.I. Manin, 49-67. Progress in Mathematics 269. Boston: Birkhäuser, 2010. ·Zbl 1195.14014
[6]Birkenhake, C. and H. Lange. Complex Abelian Varieties. Die Grundlehren der mathema-tischen Wissenschaften 302. New York: Springer, 2004. https://doi.org/10.1007/978-3-662-06307-1. ·doi:10.1007/978-3-662-06307-1
[7]Boucksom, S., C. Favre, and M. Jonsson. “Solution to a non-Archimedean Monge-Amp”ere equation.” J. Amer. Math. Soc. 28 (2014): 617-67. https://doi.org/10.1090/S0894-0347-2014-00806-7. ·Zbl 1325.32021 ·doi:10.1090/S0894-0347-2014-00806-7
[8]Boucksom, S. and M. Jonsson. “Tropical and non-Archimedean limits of degenerating families of volume forms.” J. Ec. Polytech. Math. 4 (2017): 87-139. https://doi.org/10.5802/jep.39. ·Zbl 1401.32019 ·doi:10.5802/jep.39
[9]Brown, M. and E. Mazzon. “The essential skeleton of a product of degenerations.” Compositio Math. 155 (2019): 1259-300. ·Zbl 1440.14131
[10]Faltings, G. and C.-L. Chai. Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 22. New York: Springer, 1990. https://doi.org/10.1007/978-3-662-02632-8. ·Zbl 0744.14031 ·doi:10.1007/978-3-662-02632-8
[11]Fujiki, A. “Finite automorphism groups of complex tori of dimension two.” Publ. R. I. M. S. 24, no. 1 (1988): 1-97. ·Zbl 0654.32015
[12]Goldman, W. and M. W. Hirsch. “The radiance obstruction and parallel forms on affine manifolds.” Trans. Amer. Math. Soc. 286, no. 2 (1984): 629-49. https://doi.org/10.1090/S0002-9947-1984-0760977-7. ·Zbl 0561.57014 ·doi:10.1090/S0002-9947-1984-0760977-7
[13]Goto, K. “On the two types of Affine structures for degenerating Kummer surfaces non-Archimedean vs Gromov-Hausdorff limits.” arXiv:2203.14543.
[14]Gross, M. “Mirror symmetry and the Strominger-Yau-Zaslow conjecture.” Curr. Dev. Math. 2012 (2012): 133-91. https://doi.org/10.4310/CDM.2012.v2012.n1.a3. ·Zbl 1294.14015 ·doi:10.4310/CDM.2012.v2012.n1.a3
[15]Gross, M. and B. Siebert. “Mirror symmetry via logarithmic degeneration data I.” J. Diff. Geom. 72, no. 2 (2006): 169-338. ·Zbl 1107.14029
[16]Gubler, W. “Tropical varieties for non-archimedean analytic spaces.” Inv. Math. 169 (2007): 321-76. https://doi.org/10.1007/s00222-007-0048-z. ·Zbl 1153.14036 ·doi:10.1007/s00222-007-0048-z
[17]Gubler, W. “Non-archimedean canonical measures on abelian varieties.” Compositio Math. 146 (2010): 683-730. https://doi.org/10.1112/S0010437X09004679. ·Zbl 1192.14021 ·doi:10.1112/S0010437X09004679
[18]Hitchin, N. “The moduli space of special Lagrangian submanifolds.” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997): 503-15. ·Zbl 1015.32022
[19]Harvey, R. and H. B. Lawson. “Calibrated geometries.” Acta Math. 148 (1982): 47-157. https:// doi.org/10.1007/BF02392726. ·Zbl 0584.53021 ·doi:10.1007/BF02392726
[20]Hodge, W. V. D. The Theory and Applications of Harmonic Integrals. New York, Macmillan: Cambridge University Press, 1941. ·Zbl 0024.39703
[21]Huybrechts, D. Lectures on K3 Surfaces. Cambridge Studies in Advanced Mathematics 158. Cambridge: Cambridge University Press, 2016. 1684 K. Goto and Y. Odaka
[22]Künnemann, K. “Projective regular models for abelian varieties, semistable reduction, and the height pairing.” Duke Math. J. 95 (1998): 161-212. https://doi.org/10.1215/S0012-7094-98-09505-9. ·Zbl 0955.14017 ·doi:10.1215/S0012-7094-98-09505-9
[23]Kontsevich, M. and Y. Soibelman. Affine Structures and Non-Archimedean Analytic Spaces. Progr. Math. 244. 321-85. Birkhäuser: Springer, 2006. ·Zbl 1114.14027
[24]Li, Y. “Metric SYZ conjecture and non-archimedean geometry.” Internat. J. Modern Phys. A 37, no. 17 (2022): 44 pp.
[25]Liu, Y. “A non-archimedean analogue of Calabi-Yau theorem for totally degenerate abelian varieties.” J. Diff. Geom. 89 (2011): 87-110. ·Zbl 1254.14026
[26]Moret-Bailly, L. “Métriques permises, Séminaire sur les pinceaux arithmétiques: La Conjec-ture de Mordell.” Astérisque 127 (1985): 29-87. ·Zbl 1182.11028
[27]Matsumoto, Y. “Degeneration of K3 surfaces with non-symplectic automorphisms.” Rend. Semin. Mat. Univ. Padova. ·Zbl 1539.14074
[28]Morgan, J. and P. Shalen. “Valuations, trees, and degenerations of hyperbolic structures, I.” Ann. of Math. (2) 120 (1984): 401-76. ·Zbl 0583.57005
[29]Mumford, D. Abelian Varieties. Tata Institute of Fundamental Research Studiesin Mathemat-ics, No. 5 Published for the Tata Institute of Fundamental Research. London, Bombay: Oxford University Press, 1970, viii+242. ·Zbl 0223.14022
[30]Mumford, D. “An analytic construction of degenerating abelian varieties over complete rings.” Compositio Math. 24, no. 3 (1972): 239-72. ·Zbl 0241.14020
[31]Mitsui, K. and I. Nakamura. “Relative compactifications of semiabelian Néron models.” (forthcoming) arXiv:2201.08113
[32]Nicaise, J., C. Xu, and T. Yu. “The non-archimedean SYZ fibration.” Compos. Math. 155, no. 5 (2019): 953-72. ·Zbl 1420.14093
[33]Odaka, Y. “Tropical geometric compactification of moduli, II: A g case and holomorphic limits.” I. M. R. N. 2019, no. 21: 6614-60. ·Zbl 1431.14050
[34]Odaka, Y. and Y. Oshima. Collapsing K3 Surfaces, Tropical Geometry and Moduli Compact-ifications of Satake, Morgan-Shalen Type. MSJ Memoir 40. Tokyo: Math Society of Japan, 2021. ·Zbl 1474.14064
[35]Odaka, Y. “Degenerated Calabi-Yau varieties with infinite components, Moduli compactifica-tions, and limit toroidal structures.” Eur. J. Math. 8, no. 3 (2022): 1105-57. ·Zbl 1509.14076
[36]Odaka, Y.An unpublished note.
[37]Overkamp, O. “Degeneration of Kummer surfaces.” Math. Proc. Camb. Phil. Soc. 171 (2021): 65-97. https://doi.org/10.1017/S0305004120000067. ·Zbl 1483.14044 ·doi:10.1017/S0305004120000067
[38]PilleSchneider, L. “Global pluripotential theory on hybrid spaces.” arXiv:2209.04879.
[39]Strominger, A., S.-T. Yau, and E. Zaslow. “Mirror symmetry is T-duality.” Nucl. Phys. B 479, no. 1-2 (1996): 243-59. https://doi.org/10.1016/0550-3213(96)00434-8. ·Zbl 0896.14024 ·doi:10.1016/0550-3213(96)00434-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp