Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A convex analysis approach to the metric mean dimension: limits of scaled pressures and variational principles.(English)Zbl 1537.37041

The authors introduce the notion of upper metric mean dimension of a one-parameter family of scaled pressure functions, which extends the corresponding notion for a single potential due toM. Tsukamoto [Adv. Math. 361, Article ID 106935, 53 p. (2020;Zbl 1436.37032)]. Some of its properties are established, particularly a variational principle in terms of Katok entropy. The end of paper deals with some applications and open questions.

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
28D20 Entropy and other invariants
37B40 Topological entropy
26A51 Convexity of real functions in one variable, generalizations

Citations:

Zbl 1436.37032

Cite

References:

[1]Biś, A.; Carvalho, M.; Mendes, M.; Varandas, P., A convex analysis approach to entropy functions, variational principles and equilibrium states. Commun. Math. Phys., 215-256 (2022) ·Zbl 1502.37042
[2]Biś, A.; Carvalho, M.; Mendes, M.; Varandas, P.; Zhong, X., Correction: a convex analysis approach to entropy functions, variational principles and equilibrium states. Commun. Math. Phys., 3, 3335-3342 (2023) ·Zbl 07719646
[3]A. Biś, M. Carvalho, M. Mendes, P. Varandas, Entropy functions for semigroup actions, preprint, 2022.
[4]Brémont, J., Entropy and maximizing measures of generic continuous functions. C. R. Math. Acad. Sci. Sér. I, 199-201 (2008) ·Zbl 1131.37005
[5]Carvalho, M.; Rodrigues, F.; Varandas, P., A variational formula for the metric mean dimension of free semigroup actions. Ergod. Theory Dyn. Syst., 65-85 (2021)
[6]Chen, H.; Cheng, D.; Li, Z., Upper metric mean dimensions with potential. Results Math., 54 (2022) ·Zbl 1489.37029
[7]Cheng, D.; Li, Z., Scaled pressure of dynamical systems. J. Differ. Equ., 441-471 (2023) ·Zbl 1507.37041
[8]Contreras, G., Ground states are generically a periodic orbit. Invent. Math., 2, 383-412 (2016) ·Zbl 1378.37047
[9]Feng, D.-J.; Huang, W., Variational principle for weighted topological pressure. J. Math. Pures Appl., 411-452 (2016) ·Zbl 1360.37080
[10]Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom., 323-415 (1999) ·Zbl 1160.37322
[11]Gutman, Y.; Śpiewak, A., Around the variational principle for metric mean dimension. Stud. Math., 3, 345-360 (2021) ·Zbl 1484.37002
[12]Survey, O. J., Ergodic optimization in dynamical systems. Ergod. Theory Dyn. Syst., 10, 2593-2618 (2019) ·Zbl 1435.37009
[13]Kawabata, T.; Dembo, A., The rate-distortion dimension of sets and measures. IEEE Trans. Inf. Theory, 5, 1564-1572 (1994) ·Zbl 0819.94018
[14]Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci., 137-173 (1980) ·Zbl 0445.58015
[15]Lindenstrauss, E.; Weiss, B., Mean topological dimension. Isr. J. Math., 1-24 (2000) ·Zbl 0978.54026
[16]Lindenstrauss, E.; Tsukamoto, M., From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory, 3590-3609 (2018) ·Zbl 1395.94215
[17]Lindenstrauss, E.; Tsukamoto, M., Double variational principle for mean dimension. Geom. Funct. Anal., 1048-1109 (2019) ·Zbl 1433.37025
[18]Morris, I., Ergodic optimization for generic continuous functions. Discrete Contin. Dyn. Syst., 383-388 (2010) ·Zbl 1196.37018
[19]Scopel, E., Contributions to the theory of metric mean dimension and mean Hausdorff dimension (2021), Universidade Federal do Rio Grande do Sul - UFRGS, (in Portuguese)
[20]Shi, R., On variational principles for metric mean dimension. IEEE Trans. Inf. Theory, 7, 4282-4288 (2022) ·Zbl 1505.94028
[21]Shi, R., Finite mean dimension and marker property. Trans. Am. Math. Soc. (June 2023), electronically published ·Zbl 1527.37008
[22]Shinoda, M., Uncountably many maximizing measures for a dense subset of continuous functions. Nonlinearity, 2192-2200 (2018) ·Zbl 1394.37054
[23]Sigmund, K., On dynamical systems with the specification property. Trans. Am. Math. Soc., 285-299 (1974) ·Zbl 0286.28010
[24]Sigmund, K., On the connectedness of ergodic systems. Manuscr. Math., 27-32 (1977) ·Zbl 0365.28014
[25]Tsukamoto, M., Double variational principle for mean dimension with potential. Adv. Math. (2020) ·Zbl 1436.37032
[26]Tsukamoto, M.; Tsutaya, M.; Yoshinaga, M., G-index, topological dynamics and the marker property. Isr. J. Math., 737-764 (2022) ·Zbl 1518.37023
[27]Velozo, A.; Velozo, R., Rate distortion theory, metric mean dimension and measure theoretic entropy (2017), preprint
[28]Walters, P., An Introduction to Ergodic Theory. Graduate Texts in Mathematics (1982), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg ·Zbl 0475.28009
[29]Yang, R.; Chen, E.; Zhou, X., On variational principle for upper metric mean dimension with potential (2022), preprint
[30]Yang, R.; Chen, E.; Zhou, X., Some notes on variational principle for metric mean dimension. IEEE Trans. Inf. Theory, 5, 2796-2800 (2023) ·Zbl 1542.37005
[31]Yang, R.; Chen, E.; Zhou, X., Bowen’s equations for upper metric mean dimension with potential. Nonlinearity, 9, 4905-4938 (2022) ·Zbl 1497.49004
[32]Ye, X.; Zhang, G., Entropy points and applications. Trans. Am. Math. Soc., 12, 6167-6186 (2007) ·Zbl 1121.37020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp