[1] | Biś, A.; Carvalho, M.; Mendes, M.; Varandas, P., A convex analysis approach to entropy functions, variational principles and equilibrium states. Commun. Math. Phys., 215-256 (2022) ·Zbl 1502.37042 |
[2] | Biś, A.; Carvalho, M.; Mendes, M.; Varandas, P.; Zhong, X., Correction: a convex analysis approach to entropy functions, variational principles and equilibrium states. Commun. Math. Phys., 3, 3335-3342 (2023) ·Zbl 07719646 |
[3] | A. Biś, M. Carvalho, M. Mendes, P. Varandas, Entropy functions for semigroup actions, preprint, 2022. |
[4] | Brémont, J., Entropy and maximizing measures of generic continuous functions. C. R. Math. Acad. Sci. Sér. I, 199-201 (2008) ·Zbl 1131.37005 |
[5] | Carvalho, M.; Rodrigues, F.; Varandas, P., A variational formula for the metric mean dimension of free semigroup actions. Ergod. Theory Dyn. Syst., 65-85 (2021) |
[6] | Chen, H.; Cheng, D.; Li, Z., Upper metric mean dimensions with potential. Results Math., 54 (2022) ·Zbl 1489.37029 |
[7] | Cheng, D.; Li, Z., Scaled pressure of dynamical systems. J. Differ. Equ., 441-471 (2023) ·Zbl 1507.37041 |
[8] | Contreras, G., Ground states are generically a periodic orbit. Invent. Math., 2, 383-412 (2016) ·Zbl 1378.37047 |
[9] | Feng, D.-J.; Huang, W., Variational principle for weighted topological pressure. J. Math. Pures Appl., 411-452 (2016) ·Zbl 1360.37080 |
[10] | Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom., 323-415 (1999) ·Zbl 1160.37322 |
[11] | Gutman, Y.; Śpiewak, A., Around the variational principle for metric mean dimension. Stud. Math., 3, 345-360 (2021) ·Zbl 1484.37002 |
[12] | Survey, O. J., Ergodic optimization in dynamical systems. Ergod. Theory Dyn. Syst., 10, 2593-2618 (2019) ·Zbl 1435.37009 |
[13] | Kawabata, T.; Dembo, A., The rate-distortion dimension of sets and measures. IEEE Trans. Inf. Theory, 5, 1564-1572 (1994) ·Zbl 0819.94018 |
[14] | Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci., 137-173 (1980) ·Zbl 0445.58015 |
[15] | Lindenstrauss, E.; Weiss, B., Mean topological dimension. Isr. J. Math., 1-24 (2000) ·Zbl 0978.54026 |
[16] | Lindenstrauss, E.; Tsukamoto, M., From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory, 3590-3609 (2018) ·Zbl 1395.94215 |
[17] | Lindenstrauss, E.; Tsukamoto, M., Double variational principle for mean dimension. Geom. Funct. Anal., 1048-1109 (2019) ·Zbl 1433.37025 |
[18] | Morris, I., Ergodic optimization for generic continuous functions. Discrete Contin. Dyn. Syst., 383-388 (2010) ·Zbl 1196.37018 |
[19] | Scopel, E., Contributions to the theory of metric mean dimension and mean Hausdorff dimension (2021), Universidade Federal do Rio Grande do Sul - UFRGS, (in Portuguese) |
[20] | Shi, R., On variational principles for metric mean dimension. IEEE Trans. Inf. Theory, 7, 4282-4288 (2022) ·Zbl 1505.94028 |
[21] | Shi, R., Finite mean dimension and marker property. Trans. Am. Math. Soc. (June 2023), electronically published ·Zbl 1527.37008 |
[22] | Shinoda, M., Uncountably many maximizing measures for a dense subset of continuous functions. Nonlinearity, 2192-2200 (2018) ·Zbl 1394.37054 |
[23] | Sigmund, K., On dynamical systems with the specification property. Trans. Am. Math. Soc., 285-299 (1974) ·Zbl 0286.28010 |
[24] | Sigmund, K., On the connectedness of ergodic systems. Manuscr. Math., 27-32 (1977) ·Zbl 0365.28014 |
[25] | Tsukamoto, M., Double variational principle for mean dimension with potential. Adv. Math. (2020) ·Zbl 1436.37032 |
[26] | Tsukamoto, M.; Tsutaya, M.; Yoshinaga, M., G-index, topological dynamics and the marker property. Isr. J. Math., 737-764 (2022) ·Zbl 1518.37023 |
[27] | Velozo, A.; Velozo, R., Rate distortion theory, metric mean dimension and measure theoretic entropy (2017), preprint |
[28] | Walters, P., An Introduction to Ergodic Theory. Graduate Texts in Mathematics (1982), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg ·Zbl 0475.28009 |
[29] | Yang, R.; Chen, E.; Zhou, X., On variational principle for upper metric mean dimension with potential (2022), preprint |
[30] | Yang, R.; Chen, E.; Zhou, X., Some notes on variational principle for metric mean dimension. IEEE Trans. Inf. Theory, 5, 2796-2800 (2023) ·Zbl 1542.37005 |
[31] | Yang, R.; Chen, E.; Zhou, X., Bowen’s equations for upper metric mean dimension with potential. Nonlinearity, 9, 4905-4938 (2022) ·Zbl 1497.49004 |
[32] | Ye, X.; Zhang, G., Entropy points and applications. Trans. Am. Math. Soc., 12, 6167-6186 (2007) ·Zbl 1121.37020 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.