Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Compact contact sets of sub-quadratic solutions to the thin obstacle problem.(English)Zbl 1537.35425

Summary: We study global solutions to the thin obstacle problem with at most quadratic growth at infinity. We show that every ellipsoid can be realized as the contact set of such a solution. On the other hand, if such a solution has a compact contact set, we show that it must be an ellipsoid.

MSC:

35R35 Free boundary problems for PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35J86 Unilateral problems for linear elliptic equations and variational inequalities with linear elliptic operators
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions

Cite

References:

[1]Athanasopoulos, I.; Caffarelli, L. A., Optimal regularity of lower dimensional obstacle problems, Zap. Nauč. Semin. POMI, 310, 2004, Kraev. Zadachi Mat. Fiz. I Smezh. Vopr. Teor. Funktzs. 35, 49-66 ·Zbl 1108.35038
[2]Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S., The structure of the free boundary for lower dimensional obstacle problems, Am. J. Math., 130, 2, 485-498, 2008 ·Zbl 1185.35339
[3]Caffarelli, L. A., The obstacle problem revisited, J. Fourier Anal. Appl., 4, 4-5, 383-402, 1998 ·Zbl 0928.49030
[4]Colombo, M.; Spolaor, L.; Velichkov, B., Direct epiperimetric inequalities for the thin obstacle problem and applications, Commun. Pure Appl. Math., 73, 2, 384-420, 2020 ·Zbl 1433.49010
[5]Dive, P., Attraction des ellipsoïdes homogènes et réciproques d’un théorème de Newton, Bull. Soc. Math. Fr., 31, 128-140, 1931 ·Zbl 0004.16601
[6]DiBenedetto, E.; Friedman, A., Bubble growth in porous media, Indiana Univ. Math. J., 35, 3, 573-606, 1986 ·Zbl 0667.35074
[7]De Silva, D.; Savin, O., Boundary Harnack estimates in slip domains and applications to thin free boundary problems, Rev. Mat. Iberoam., 32, 3, 891-912, 2016 ·Zbl 1356.35020
[8]S. Eberle, A. Figalli, G. Weiss, Complete classification of global solutions to the obstacle problem, Preprint. ·Zbl 07995688
[9]Eberle, S.; Ros-Oton, X.; Weiss, G., Characterizing compact coincidence sets in the thin obstacle problem and the obstacle problem for the fractional Laplacian, Nonlinear Anal., 211, Article 112473 pp., 2021 ·Zbl 1471.35297
[10]Eberle, S.; Shahgholian, H.; Weiss, G., On global solutions of the obstacle problem, Duke Math. J., 172, 11, 2149-2193, 2023 ·Zbl 1522.35600
[11]Eberle, S.; Weiss, G., Characterizing compact coincidence sets in the obstacle problem - a short proof, Algebra Anal., 32, 4, 137-145, 2020 ·Zbl 1471.35341
[12]Fernández-Real, X.; Ros-Oton, X., Free boundary regularity for almost every solution to the Signorini problem, Arch. Ration. Mech. Anal., 240, 1, 419-466, 2021 ·Zbl 07331727
[13]Friedman, S.; Sakai, M., A characterization of null quadrature domains in \(\mathbb{R}^N\), Indiana Univ. Math. J., 35, 3, 607-610, 1986 ·Zbl 0615.31001
[14]Figalli, A.; Serra, J., On the fine structure of the free boundary for the classical obstacle problem, Invent. Math., 215, 1, 311-366, 2019 ·Zbl 1408.35228
[15]Franceschini, F.; Serra, J., Free boundary partial regularity in the thin obstacle problem, Preprint ·Zbl 1537.35125
[16]Focardi, M.; Spadaro, E., On the measure and structure of the free boundary of the lower dimensional obstacle problem, Arch. Ration. Mech. Anal., 230, 1, 125-184, 2018 ·Zbl 1405.35257
[17]Garofalo, N.; Petrosyan, A., Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math., 177, 2, 415-461, 2009 ·Zbl 1175.35154
[18]Karp, L.; Margulis, A., Newtonian potential theory for unbounded sources and applications to free boundary problems, J. Anal. Math., 70, 1-63, 1996 ·Zbl 0876.35136
[19]Kellogg, O. D., Foundations of Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 31, 1967, Springer-Verlag: Springer-Verlag Berlin-New York, Reprint from the first edition of 1929 ·Zbl 0152.31301
[20]Koch, H.; Petrosyan, A.; Shi, W., Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal., 126, 3-44, 2015 ·Zbl 1329.35362
[21]Li, D.; Li, Z.; Yuan, Y., A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math., 361, 29pp, 2020 ·Zbl 1435.35140
[22]Monneau, R., On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal., 13, 359-389, 2003 ·Zbl 1041.35093
[23]Petrosyan, A.; Shahgholian, H.; Uraltseva, N., Regularity of Free Boundaries in Obstacle-Type Problems, Graduate Studies in Mathematics, vol. 136, 2012, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1254.35001
[24]Sakai, M., Null quadrature domains, J. Analyze Math., 40, 144-154, 1981 ·Zbl 0483.30002
[25]Savin, O.; Yu, H., Contact points with integer frequencies in the thin obstacle problem, Commun. Pure Appl. Math., 76, 12, 4048-4074, 2023 ·Zbl 1552.49008
[26]Savin, O.; Yu, H., Half-space solutions with 7/2 frequency in the thin obstacle problem, Arch. Ration. Mech. Anal., 246, 2-3, 397-474, 2022 ·Zbl 1517.35272
[27]Savin, O.; Yu, H., Regularity of the singular set in the fully nonlinear obstacle problem, J. Eur. Math. Soc., 25, 2, 571-610, 2023 ·Zbl 1510.35405
[28]Shahgholian, H., On quadrature domains and the Schwartz potential, J. Math. Anal. Appl., 171, 1, 61-78, 1992 ·Zbl 0768.31003
[29]Uraltseva, N., On the regularity of solutions of variational inequalities, Usp. Mat. Nauk, 42, 6, 151-174, 1987 ·Zbl 0696.49022
[30]Weiss, G. S., A homogeneity improvement approach to the obstacle problem, Invent. Math., 138, 1, 23-50, 1999 ·Zbl 0940.35102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp