[1] | Athanasopoulos, I.; Caffarelli, L. A., Optimal regularity of lower dimensional obstacle problems, Zap. Nauč. Semin. POMI, 310, 2004, Kraev. Zadachi Mat. Fiz. I Smezh. Vopr. Teor. Funktzs. 35, 49-66 ·Zbl 1108.35038 |
[2] | Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S., The structure of the free boundary for lower dimensional obstacle problems, Am. J. Math., 130, 2, 485-498, 2008 ·Zbl 1185.35339 |
[3] | Caffarelli, L. A., The obstacle problem revisited, J. Fourier Anal. Appl., 4, 4-5, 383-402, 1998 ·Zbl 0928.49030 |
[4] | Colombo, M.; Spolaor, L.; Velichkov, B., Direct epiperimetric inequalities for the thin obstacle problem and applications, Commun. Pure Appl. Math., 73, 2, 384-420, 2020 ·Zbl 1433.49010 |
[5] | Dive, P., Attraction des ellipsoïdes homogènes et réciproques d’un théorème de Newton, Bull. Soc. Math. Fr., 31, 128-140, 1931 ·Zbl 0004.16601 |
[6] | DiBenedetto, E.; Friedman, A., Bubble growth in porous media, Indiana Univ. Math. J., 35, 3, 573-606, 1986 ·Zbl 0667.35074 |
[7] | De Silva, D.; Savin, O., Boundary Harnack estimates in slip domains and applications to thin free boundary problems, Rev. Mat. Iberoam., 32, 3, 891-912, 2016 ·Zbl 1356.35020 |
[8] | S. Eberle, A. Figalli, G. Weiss, Complete classification of global solutions to the obstacle problem, Preprint. ·Zbl 07995688 |
[9] | Eberle, S.; Ros-Oton, X.; Weiss, G., Characterizing compact coincidence sets in the thin obstacle problem and the obstacle problem for the fractional Laplacian, Nonlinear Anal., 211, Article 112473 pp., 2021 ·Zbl 1471.35297 |
[10] | Eberle, S.; Shahgholian, H.; Weiss, G., On global solutions of the obstacle problem, Duke Math. J., 172, 11, 2149-2193, 2023 ·Zbl 1522.35600 |
[11] | Eberle, S.; Weiss, G., Characterizing compact coincidence sets in the obstacle problem - a short proof, Algebra Anal., 32, 4, 137-145, 2020 ·Zbl 1471.35341 |
[12] | Fernández-Real, X.; Ros-Oton, X., Free boundary regularity for almost every solution to the Signorini problem, Arch. Ration. Mech. Anal., 240, 1, 419-466, 2021 ·Zbl 07331727 |
[13] | Friedman, S.; Sakai, M., A characterization of null quadrature domains in \(\mathbb{R}^N\), Indiana Univ. Math. J., 35, 3, 607-610, 1986 ·Zbl 0615.31001 |
[14] | Figalli, A.; Serra, J., On the fine structure of the free boundary for the classical obstacle problem, Invent. Math., 215, 1, 311-366, 2019 ·Zbl 1408.35228 |
[15] | Franceschini, F.; Serra, J., Free boundary partial regularity in the thin obstacle problem, Preprint ·Zbl 1537.35125 |
[16] | Focardi, M.; Spadaro, E., On the measure and structure of the free boundary of the lower dimensional obstacle problem, Arch. Ration. Mech. Anal., 230, 1, 125-184, 2018 ·Zbl 1405.35257 |
[17] | Garofalo, N.; Petrosyan, A., Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math., 177, 2, 415-461, 2009 ·Zbl 1175.35154 |
[18] | Karp, L.; Margulis, A., Newtonian potential theory for unbounded sources and applications to free boundary problems, J. Anal. Math., 70, 1-63, 1996 ·Zbl 0876.35136 |
[19] | Kellogg, O. D., Foundations of Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 31, 1967, Springer-Verlag: Springer-Verlag Berlin-New York, Reprint from the first edition of 1929 ·Zbl 0152.31301 |
[20] | Koch, H.; Petrosyan, A.; Shi, W., Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal., 126, 3-44, 2015 ·Zbl 1329.35362 |
[21] | Li, D.; Li, Z.; Yuan, Y., A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math., 361, 29pp, 2020 ·Zbl 1435.35140 |
[22] | Monneau, R., On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal., 13, 359-389, 2003 ·Zbl 1041.35093 |
[23] | Petrosyan, A.; Shahgholian, H.; Uraltseva, N., Regularity of Free Boundaries in Obstacle-Type Problems, Graduate Studies in Mathematics, vol. 136, 2012, American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1254.35001 |
[24] | Sakai, M., Null quadrature domains, J. Analyze Math., 40, 144-154, 1981 ·Zbl 0483.30002 |
[25] | Savin, O.; Yu, H., Contact points with integer frequencies in the thin obstacle problem, Commun. Pure Appl. Math., 76, 12, 4048-4074, 2023 ·Zbl 1552.49008 |
[26] | Savin, O.; Yu, H., Half-space solutions with 7/2 frequency in the thin obstacle problem, Arch. Ration. Mech. Anal., 246, 2-3, 397-474, 2022 ·Zbl 1517.35272 |
[27] | Savin, O.; Yu, H., Regularity of the singular set in the fully nonlinear obstacle problem, J. Eur. Math. Soc., 25, 2, 571-610, 2023 ·Zbl 1510.35405 |
[28] | Shahgholian, H., On quadrature domains and the Schwartz potential, J. Math. Anal. Appl., 171, 1, 61-78, 1992 ·Zbl 0768.31003 |
[29] | Uraltseva, N., On the regularity of solutions of variational inequalities, Usp. Mat. Nauk, 42, 6, 151-174, 1987 ·Zbl 0696.49022 |
[30] | Weiss, G. S., A homogeneity improvement approach to the obstacle problem, Invent. Math., 138, 1, 23-50, 1999 ·Zbl 0940.35102 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.