Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A relative Yau-Tian-Donaldson conjecture and stability thresholds.(English)Zbl 1537.32082

Summary: Generalizing Fujita-Odaka invariant, we define a function \(\tilde{\delta}\) on a set ofgeneralized \(b\)-divisors over a smooth Fano variety. This allows us to provide a new characterization of uniform \(K\)-stability. A key role is played by a new Riemann-Zariski formalism for \(K\)-stability.
For any generalized \(b\)-divisor \(\mathbf{D}\), we introduce a (uniform) \(\mathbf{D}\)-log K-stability notion. We prove that the existence of a unique Kähler-Einstein metric with prescribed singularities implies this new \(K\)-stability notion when the prescribed singularities are given by the generalized \(b\)-divisor \(\mathbf{D}\).
We connect the existence of a unique Kähler-Einstein metric with prescribed singularities to a uniform \(\mathbf{D}\)-log Ding-stability notion which we introduce. We show that these conditions are satisfied exactly when \(\tilde{\delta}(\mathbf{D}) > 1\), extending to the \(\mathbf{D}\)-log setting the \(\delta\)-valuative criterion of Fujita-Odaka and Blum-Jonsson.
Finally we prove thestrong openness of the uniform \(\mathbf{D}\)-log Ding stability as a consequence of the strong continuity of \(\tilde{\delta}\).

MSC:

32Q26 Notions of stability for complex manifolds
14J45 Fano varieties
32Q20 Kähler-Einstein manifolds
32U05 Plurisubharmonic functions and generalizations

Cite

References:

[1]Bedford, E.; Taylor, B. A., Fine topology, Šilov boundary, and \(( d d^c )^n\), J. Funct. Anal., 72, 2, 225-251, 1987 ·Zbl 0677.31005
[2]Berman, R. J., K-polystability of \(\mathbb{Q} \)-Fano varieties admitting Kähler-Einstein metrics, Invent. Math., 203, 3, 973-1025, 2016 ·Zbl 1353.14051
[3]Berman, R. J.; Boucksom, S.; Jonsson, M., A variational approach to the Yau-Tian-Donaldson conjecture, J. Am. Math. Soc., 34, 3, 605-652, 2021 ·Zbl 1487.32141
[4]Berndtsson, B., A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., 200, 1, 149-200, 2015 ·Zbl 1318.53077
[5]Blum, H.; Jonsson, M., Thresholds, valuations, and K-stability, Adv. Math., 365, Article 107062 pp., 2020 ·Zbl 1441.14137
[6]Boucksom, S., Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér. (4), 37, 1, 45-76, 2004 ·Zbl 1054.32010
[7]Boucksom, S.; de Fernex, T.; Favre, C., The volume of an isolated singularity, Duke Math. J., 161, 8, 1455-1520, 2012 ·Zbl 1251.14026
[8]Boucksom, S.; Demailly, J.-P.; Păun, M.; Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 2, 201-248, 2013 ·Zbl 1267.32017
[9]Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199-262, 2010 ·Zbl 1213.32025
[10]Boucksom, S.; Favre, C.; Jonsson, M., Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., 44, 2, 449-494, 2008 ·Zbl 1146.32017
[11]Boucksom, S.; Favre, C.; Jonsson, M., Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom., 18, 2, 279-308, 2009 ·Zbl 1162.14003
[12]Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble), 67, 2, 743-841, 2017 ·Zbl 1391.14090
[13]Chen, X.; Donaldson, S.; Sun, S., Kähler-Einstein metrics on Fano manifolds. I: approximation of metrics with cone singularities, J. Am. Math. Soc., 28, 1, 183-197, 2015 ·Zbl 1312.53096
[14]Chen, X.; Donaldson, S.; Sun, S., Kähler-Einstein metrics on Fano manifolds. II: limits with cone angle less than 2π, J. Am. Math. Soc., 28, 1, 199-234, 2015 ·Zbl 1312.53097
[15]Chen, X.; Donaldson, S.; Sun, S., Kähler-Einstein metrics on Fano manifolds. III: limits as cone angle approaches 2π and completion of the main proof, J. Am. Math. Soc., 28, 1, 235-278, 2015 ·Zbl 1311.53059
[16]Dang, N.-B.; Favre, C., Intersection theory of nef b-divisor classes, Compos. Math., 158, 7, 1563-1594, 2022 ·Zbl 1499.14014
[17]Darvas, T., Weak geodesic rays in the space of Kähler potentials and the class \(\mathcal{E}(X, \omega)\), J. Inst. Math. Jussieu, 16, 4, 837-858, 2017 ·Zbl 1377.53092
[18]Darvas, T.; Di Nezza, E.; Lu, C. H., \( L^1\) metric geometry of big cohomology classes, Ann. Inst. Fourier (Grenoble), 68, 7, 3053-3086, 2018 ·Zbl 1505.53081
[19]Darvas, T.; Di Nezza, E.; Lu, C. H., Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049-2087, 2018 ·Zbl 1396.32011
[20]Darvas, T.; Di Nezza, E.; Lu, C. H., On the singularity type of full mass currents in big cohomology classes, Compos. Math., 154, 2, 380-409, 2018 ·Zbl 1398.32042
[21]Darvas, T.; Di Nezza, E.; Lu, C. H., Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, Math. Ann., 379, 1-2, 95-132, 2021 ·Zbl 1460.32087
[22]Darvas, T.; Di Nezza, E.; Lu, H.-C., The metric geometry of singularity types, J. Reine Angew. Math., 771, 137-170, 2021 ·Zbl 1503.32029
[23]Darvas, T.; Lu, C. H., Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol., 24, 4, 1907-1967, 2020 ·Zbl 1479.32011
[24]Darvas, T.; Xia, M., The closures of test configurations and algebraic singularity types, Adv. Math., 397, 108198, 2022 ·Zbl 1487.32132
[25]Darvas, T.; Zhang, K., Twisted Kähler-Einstein metrics in big classes, 2022, arXiv preprint
[26]Demailly, J.-P., Singular Hermitian metrics on positive line bundles, (Complex Algebraic Varieties. Complex Algebraic Varieties, Bayreuth, 1990. Complex Algebraic Varieties. Complex Algebraic Varieties, Bayreuth, 1990, Lecture Notes in Math., vol. 1507, 1992, Springer: Springer Berlin), 87-104 ·Zbl 0784.32024
[27]Demailly, J.-P., Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, vol. 1, 2012, International Press; Higher Education Press: International Press; Higher Education Press Somerville, MA; Beijing ·Zbl 1271.14001
[28]Demailly, J.-P.; Ein, L.; Lazarsfeld, R., A subadditivity property of multiplier ideals, 48, 137-156, 2000, Dedicated to William Fulton on the occasion of his 60th birthday ·Zbl 1077.14516
[29]Demailly, J.-P.; Kollár, J., Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), 34, 4, 525-556, 2001 ·Zbl 0994.32021
[30]Dervan, R., Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not., 15, 4728-4783, 2016 ·Zbl 1405.32032
[31]Dervan, R.; Reboulet, R., Ding stability and Kähler-Einstein metrics on manifolds with big anticanonical class, 2022, arXiv preprint
[32]Dervan, R.; Ross, J., K-stability for Kähler manifolds, Math. Res. Lett., 24, 3, 689-739, 2017 ·Zbl 1390.32021
[33]Fujita, K., Uniform K-stability and plt blowups of log Fano pairs, Kyoto J. Math., 59, 2, 399-418, 2019 ·Zbl 1419.14065
[34]Fujita, K., A valuative criterion for uniform K-stability of \(\mathbb{Q} \)-Fano varieties, J. Reine Angew. Math., 751, 309-338, 2019 ·Zbl 1435.14039
[35]Fujita, K.; Odaka, Y., On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2), 70, 4, 511-521, 2018 ·Zbl 1422.14047
[36]Fujita, T., Approximating Zariski decomposition of big line bundles, Kodai Math. J., 17, 1, 1-3, 1994 ·Zbl 0814.14006
[37]Guan, Q.; Zhou, X., A proof of Demailly’s strong openness conjecture, Ann. Math. (2), 182, 2, 605-616, 2015 ·Zbl 1329.32016
[38]Guedj, V.; Zeriahi, A., The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442-482, 2007 ·Zbl 1143.32022
[39]Guedj, V.; Zeriahi, A., Degenerate Complex Monge-Ampère Equations, EMS Tracts in Mathematics, vol. 26, 2017, European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich ·Zbl 1373.32001
[40]Hisamoto, T., Mabuchi’s soliton metric and relative D-stability, Am. J. Math., 145, 3, 765-806, 2023 ·Zbl 1528.53065
[41]Lazarsfeld, R., Positivity in Algebraic Geometry. I, A Series of Modern Surveys in Mathematics 3rd Series, vol. 48, 2004, Springer-Verlag: Springer-Verlag Berlin, Classical setting: line bundles and linear series ·Zbl 1093.14501
[42]Lazarsfeld, R.; Mustaţă, M., Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4), 42, 5, 783-835, 2009 ·Zbl 1182.14004
[43]Li, C., K-semistability is equivariant volume minimization, Duke Math. J., 166, 16, 3147-3218, 2017 ·Zbl 1409.14008
[44]Li, C., G-uniform stability and Kähler-Einstein metrics on Fano varieties, Invent. Math., 227, 2, 661-744, 2022 ·Zbl 1495.32064
[45]Li, C., K-stability and Fujita approximation, (Springer Proceedings in Mathematics and Statistics, vol. 409, 2023), 545-566 ·Zbl 1540.32010
[46]Li, C.; Tian, G.; Wang, F., The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, Peking Math. J., 5, 2, 383-426, 2022 ·Zbl 1504.32068
[47]Liu, Y.; Xu, C.; Zhuang, Z., Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. Math. (2), 196, 2, 507-566, 2022 ·Zbl 1503.14041
[48]Lu, C. H., Comparison of Monge-Ampère capacities, Ann. Pol. Math., 126, 1, 31-53, 2021 ·Zbl 1470.32117
[49]Odaka, Y., A generalization of the Ross-Thomas slope theory, Osaka J. Math., 50, 1, 171-185, 2013 ·Zbl 1328.14073
[50]Reboulet, R., The space of finite-energy metrics over a degeneration of complex manifolds, J. Éc. Polytech. Math., 10, 659-701, 2023 ·Zbl 1517.32058
[51]Ross, J.; Witt Nyström, D., Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125-169, 2014 ·Zbl 1300.32021
[52]Shokurov, V. V., Prelimiting flips, Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, Tr. Mat. Inst. Steklova, 240, 82-219, 2003 ·Zbl 1082.14019
[53]Siu, Y. T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27, 53-156, 1974 ·Zbl 0289.32003
[54]Sjöström Dyrefelt, Z., K-semistability of csck manifolds with transcendental cohomology class, J. Geom. Anal., 28, 4, 2927-2960, 2018 ·Zbl 1409.32017
[55]Tian, G., On Kähler-Einstein metrics on certain Kähler manifolds with \(C_1(M) > 0\), Invent. Math., 89, 2, 225-246, 1987 ·Zbl 0599.53046
[56]Tian, G., K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math., 68, 7, 1085, 2015 ·Zbl 1318.14038
[57]Trusiani, A., Kähler-Einstein metrics with prescribed singularities on Fano manifolds, J. Reine Angew. Math., 793, 1-57, 2022 ·Zbl 1510.32059
[58]Trusiani, A., \( L^1\) metric geometry of potentials with prescribed singularities on compact Kähler manifolds, J. Geom. Anal., 32, 2, Article 37 pp., 2022 ·Zbl 1487.32179
[59]Trusiani, A., Continuity method with movable singularities for classical complex Monge-Ampère equations, Indiana Univ. Math. J., 72, 4, 1577-1625, 2023 ·Zbl 1535.32031
[60]Trusiani, A., The strong topology of ω-plurisubharmonic functions, Anal. PDE, 16, 2, 367-405, 2023 ·Zbl 1518.32012
[61]Wang, X., Height and GIT weight, Math. Res. Lett., 19, 4, 909-926, 2012 ·Zbl 1408.14147
[62]Witt Nyström, D., Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579-591, 2019 ·Zbl 1422.32041
[63]Xia, M., Mabuchi geometry of big cohomology classes, J. Reine Angew. Math., 798, 261-292, 2023 ·Zbl 1522.53062
[64]Xu, C., K-stability of Fano varieties: an algebro-geometric approach, EMS Surv. Math. Sci., 8, 1-2, 265-354, 2021 ·Zbl 1476.14030
[65]Xu, C., K-stability for varieties with a big anticanonical class, Épij. Géom. Algébr., 2023, Special volume in honour of C. Voisin ·Zbl 1537.14065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp