[1] | Bedford, E.; Taylor, B. A., Fine topology, Šilov boundary, and \(( d d^c )^n\), J. Funct. Anal., 72, 2, 225-251, 1987 ·Zbl 0677.31005 |
[2] | Berman, R. J., K-polystability of \(\mathbb{Q} \)-Fano varieties admitting Kähler-Einstein metrics, Invent. Math., 203, 3, 973-1025, 2016 ·Zbl 1353.14051 |
[3] | Berman, R. J.; Boucksom, S.; Jonsson, M., A variational approach to the Yau-Tian-Donaldson conjecture, J. Am. Math. Soc., 34, 3, 605-652, 2021 ·Zbl 1487.32141 |
[4] | Berndtsson, B., A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., 200, 1, 149-200, 2015 ·Zbl 1318.53077 |
[5] | Blum, H.; Jonsson, M., Thresholds, valuations, and K-stability, Adv. Math., 365, Article 107062 pp., 2020 ·Zbl 1441.14137 |
[6] | Boucksom, S., Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér. (4), 37, 1, 45-76, 2004 ·Zbl 1054.32010 |
[7] | Boucksom, S.; de Fernex, T.; Favre, C., The volume of an isolated singularity, Duke Math. J., 161, 8, 1455-1520, 2012 ·Zbl 1251.14026 |
[8] | Boucksom, S.; Demailly, J.-P.; Păun, M.; Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 2, 201-248, 2013 ·Zbl 1267.32017 |
[9] | Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A., Monge-Ampère equations in big cohomology classes, Acta Math., 205, 2, 199-262, 2010 ·Zbl 1213.32025 |
[10] | Boucksom, S.; Favre, C.; Jonsson, M., Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., 44, 2, 449-494, 2008 ·Zbl 1146.32017 |
[11] | Boucksom, S.; Favre, C.; Jonsson, M., Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom., 18, 2, 279-308, 2009 ·Zbl 1162.14003 |
[12] | Boucksom, S.; Hisamoto, T.; Jonsson, M., Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble), 67, 2, 743-841, 2017 ·Zbl 1391.14090 |
[13] | Chen, X.; Donaldson, S.; Sun, S., Kähler-Einstein metrics on Fano manifolds. I: approximation of metrics with cone singularities, J. Am. Math. Soc., 28, 1, 183-197, 2015 ·Zbl 1312.53096 |
[14] | Chen, X.; Donaldson, S.; Sun, S., Kähler-Einstein metrics on Fano manifolds. II: limits with cone angle less than 2π, J. Am. Math. Soc., 28, 1, 199-234, 2015 ·Zbl 1312.53097 |
[15] | Chen, X.; Donaldson, S.; Sun, S., Kähler-Einstein metrics on Fano manifolds. III: limits as cone angle approaches 2π and completion of the main proof, J. Am. Math. Soc., 28, 1, 235-278, 2015 ·Zbl 1311.53059 |
[16] | Dang, N.-B.; Favre, C., Intersection theory of nef b-divisor classes, Compos. Math., 158, 7, 1563-1594, 2022 ·Zbl 1499.14014 |
[17] | Darvas, T., Weak geodesic rays in the space of Kähler potentials and the class \(\mathcal{E}(X, \omega)\), J. Inst. Math. Jussieu, 16, 4, 837-858, 2017 ·Zbl 1377.53092 |
[18] | Darvas, T.; Di Nezza, E.; Lu, C. H., \( L^1\) metric geometry of big cohomology classes, Ann. Inst. Fourier (Grenoble), 68, 7, 3053-3086, 2018 ·Zbl 1505.53081 |
[19] | Darvas, T.; Di Nezza, E.; Lu, C. H., Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049-2087, 2018 ·Zbl 1396.32011 |
[20] | Darvas, T.; Di Nezza, E.; Lu, C. H., On the singularity type of full mass currents in big cohomology classes, Compos. Math., 154, 2, 380-409, 2018 ·Zbl 1398.32042 |
[21] | Darvas, T.; Di Nezza, E.; Lu, C. H., Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity, Math. Ann., 379, 1-2, 95-132, 2021 ·Zbl 1460.32087 |
[22] | Darvas, T.; Di Nezza, E.; Lu, H.-C., The metric geometry of singularity types, J. Reine Angew. Math., 771, 137-170, 2021 ·Zbl 1503.32029 |
[23] | Darvas, T.; Lu, C. H., Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol., 24, 4, 1907-1967, 2020 ·Zbl 1479.32011 |
[24] | Darvas, T.; Xia, M., The closures of test configurations and algebraic singularity types, Adv. Math., 397, 108198, 2022 ·Zbl 1487.32132 |
[25] | Darvas, T.; Zhang, K., Twisted Kähler-Einstein metrics in big classes, 2022, arXiv preprint |
[26] | Demailly, J.-P., Singular Hermitian metrics on positive line bundles, (Complex Algebraic Varieties. Complex Algebraic Varieties, Bayreuth, 1990. Complex Algebraic Varieties. Complex Algebraic Varieties, Bayreuth, 1990, Lecture Notes in Math., vol. 1507, 1992, Springer: Springer Berlin), 87-104 ·Zbl 0784.32024 |
[27] | Demailly, J.-P., Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, vol. 1, 2012, International Press; Higher Education Press: International Press; Higher Education Press Somerville, MA; Beijing ·Zbl 1271.14001 |
[28] | Demailly, J.-P.; Ein, L.; Lazarsfeld, R., A subadditivity property of multiplier ideals, 48, 137-156, 2000, Dedicated to William Fulton on the occasion of his 60th birthday ·Zbl 1077.14516 |
[29] | Demailly, J.-P.; Kollár, J., Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), 34, 4, 525-556, 2001 ·Zbl 0994.32021 |
[30] | Dervan, R., Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not., 15, 4728-4783, 2016 ·Zbl 1405.32032 |
[31] | Dervan, R.; Reboulet, R., Ding stability and Kähler-Einstein metrics on manifolds with big anticanonical class, 2022, arXiv preprint |
[32] | Dervan, R.; Ross, J., K-stability for Kähler manifolds, Math. Res. Lett., 24, 3, 689-739, 2017 ·Zbl 1390.32021 |
[33] | Fujita, K., Uniform K-stability and plt blowups of log Fano pairs, Kyoto J. Math., 59, 2, 399-418, 2019 ·Zbl 1419.14065 |
[34] | Fujita, K., A valuative criterion for uniform K-stability of \(\mathbb{Q} \)-Fano varieties, J. Reine Angew. Math., 751, 309-338, 2019 ·Zbl 1435.14039 |
[35] | Fujita, K.; Odaka, Y., On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2), 70, 4, 511-521, 2018 ·Zbl 1422.14047 |
[36] | Fujita, T., Approximating Zariski decomposition of big line bundles, Kodai Math. J., 17, 1, 1-3, 1994 ·Zbl 0814.14006 |
[37] | Guan, Q.; Zhou, X., A proof of Demailly’s strong openness conjecture, Ann. Math. (2), 182, 2, 605-616, 2015 ·Zbl 1329.32016 |
[38] | Guedj, V.; Zeriahi, A., The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250, 2, 442-482, 2007 ·Zbl 1143.32022 |
[39] | Guedj, V.; Zeriahi, A., Degenerate Complex Monge-Ampère Equations, EMS Tracts in Mathematics, vol. 26, 2017, European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich ·Zbl 1373.32001 |
[40] | Hisamoto, T., Mabuchi’s soliton metric and relative D-stability, Am. J. Math., 145, 3, 765-806, 2023 ·Zbl 1528.53065 |
[41] | Lazarsfeld, R., Positivity in Algebraic Geometry. I, A Series of Modern Surveys in Mathematics 3rd Series, vol. 48, 2004, Springer-Verlag: Springer-Verlag Berlin, Classical setting: line bundles and linear series ·Zbl 1093.14501 |
[42] | Lazarsfeld, R.; Mustaţă, M., Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4), 42, 5, 783-835, 2009 ·Zbl 1182.14004 |
[43] | Li, C., K-semistability is equivariant volume minimization, Duke Math. J., 166, 16, 3147-3218, 2017 ·Zbl 1409.14008 |
[44] | Li, C., G-uniform stability and Kähler-Einstein metrics on Fano varieties, Invent. Math., 227, 2, 661-744, 2022 ·Zbl 1495.32064 |
[45] | Li, C., K-stability and Fujita approximation, (Springer Proceedings in Mathematics and Statistics, vol. 409, 2023), 545-566 ·Zbl 1540.32010 |
[46] | Li, C.; Tian, G.; Wang, F., The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, Peking Math. J., 5, 2, 383-426, 2022 ·Zbl 1504.32068 |
[47] | Liu, Y.; Xu, C.; Zhuang, Z., Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. Math. (2), 196, 2, 507-566, 2022 ·Zbl 1503.14041 |
[48] | Lu, C. H., Comparison of Monge-Ampère capacities, Ann. Pol. Math., 126, 1, 31-53, 2021 ·Zbl 1470.32117 |
[49] | Odaka, Y., A generalization of the Ross-Thomas slope theory, Osaka J. Math., 50, 1, 171-185, 2013 ·Zbl 1328.14073 |
[50] | Reboulet, R., The space of finite-energy metrics over a degeneration of complex manifolds, J. Éc. Polytech. Math., 10, 659-701, 2023 ·Zbl 1517.32058 |
[51] | Ross, J.; Witt Nyström, D., Analytic test configurations and geodesic rays, J. Symplectic Geom., 12, 1, 125-169, 2014 ·Zbl 1300.32021 |
[52] | Shokurov, V. V., Prelimiting flips, Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, Tr. Mat. Inst. Steklova, 240, 82-219, 2003 ·Zbl 1082.14019 |
[53] | Siu, Y. T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27, 53-156, 1974 ·Zbl 0289.32003 |
[54] | Sjöström Dyrefelt, Z., K-semistability of csck manifolds with transcendental cohomology class, J. Geom. Anal., 28, 4, 2927-2960, 2018 ·Zbl 1409.32017 |
[55] | Tian, G., On Kähler-Einstein metrics on certain Kähler manifolds with \(C_1(M) > 0\), Invent. Math., 89, 2, 225-246, 1987 ·Zbl 0599.53046 |
[56] | Tian, G., K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math., 68, 7, 1085, 2015 ·Zbl 1318.14038 |
[57] | Trusiani, A., Kähler-Einstein metrics with prescribed singularities on Fano manifolds, J. Reine Angew. Math., 793, 1-57, 2022 ·Zbl 1510.32059 |
[58] | Trusiani, A., \( L^1\) metric geometry of potentials with prescribed singularities on compact Kähler manifolds, J. Geom. Anal., 32, 2, Article 37 pp., 2022 ·Zbl 1487.32179 |
[59] | Trusiani, A., Continuity method with movable singularities for classical complex Monge-Ampère equations, Indiana Univ. Math. J., 72, 4, 1577-1625, 2023 ·Zbl 1535.32031 |
[60] | Trusiani, A., The strong topology of ω-plurisubharmonic functions, Anal. PDE, 16, 2, 367-405, 2023 ·Zbl 1518.32012 |
[61] | Wang, X., Height and GIT weight, Math. Res. Lett., 19, 4, 909-926, 2012 ·Zbl 1408.14147 |
[62] | Witt Nyström, D., Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J., 68, 2, 579-591, 2019 ·Zbl 1422.32041 |
[63] | Xia, M., Mabuchi geometry of big cohomology classes, J. Reine Angew. Math., 798, 261-292, 2023 ·Zbl 1522.53062 |
[64] | Xu, C., K-stability of Fano varieties: an algebro-geometric approach, EMS Surv. Math. Sci., 8, 1-2, 265-354, 2021 ·Zbl 1476.14030 |
[65] | Xu, C., K-stability for varieties with a big anticanonical class, Épij. Géom. Algébr., 2023, Special volume in honour of C. Voisin ·Zbl 1537.14065 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.