Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the maximal overgroups of Sylow subgroups of finite groups.(English)Zbl 1537.20032

Let \(G\) be a finite group, \(r \in \pi(G)\), \(R\) a Sylow \(r\)-subgroup and let \(\mathcal{M}(R)\) be the set of maximal subgroups of \(G\) containing \(R\). The main goal of the paper under review is to determine the triples \((G,r,H)\) with \(\mathcal{M}(R)=\{H\}\). The proof involves a reduction to almost simple groups and the main theorem (which cannot be stated here) extends earlier work ofM. Aschbacher [J. Algebra 66, 400–424 (1980;Zbl 0445.20008)] in the special case \(r=2\).
The authors also present several applications. In particular, they prove some new results on weakly subnormal subgroups of finite groups, which can be used to study variations of the Baer-Suzuki theorem.

MSC:

20D05 Finite simple groups and their classification
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D30 Series and lattices of subgroups
20E28 Maximal subgroups
20B15 Primitive groups
20G40 Linear algebraic groups over finite fields

Citations:

Zbl 0445.20008

Cite

References:

[1]Aivazidis, S.; Ballester-Bolinches, A., On the Frattini subgroup of a finite group, J. Algebra, 470, 254-262, 2017 ·Zbl 1357.20007
[2]Aschbacher, M., On the maximal subgroups of the finite classical groups, Invent. Math., 76, 469-514, 1984 ·Zbl 0537.20023
[3]Aschbacher, M., On finite groups of Lie type and odd characteristic, J. Algebra, 66, 400-424, 1980 ·Zbl 0445.20008
[4]Aschbacher, M.; Scott, L., Maximal subgroups of finite groups, J. Algebra, 92, 44-80, 1985 ·Zbl 0549.20011
[5]Bamberg, J.; Penttila, T., Overgroups of cyclic Sylow subgroups of linear groups, Commun. Algebra, 36, 2503-2543, 2008 ·Zbl 1162.20033
[6]Bateman, P. T.; Stemmler, R. M., Waring’s problem for algebraic number fields and primes of the form \(( p^r - 1) /( p^d - 1)\), Ill. J. Math., 6, 142-156, 1962 ·Zbl 0107.03903
[7]Baumann, B., Endliche nichtauflösbare Gruppen mit einer nilpotenten maximalen Untergruppe, J. Algebra, 38, 119-135, 1976 ·Zbl 0325.20012
[8]Bosma, W.; Cannon, J.; Playoust, C., The magma algebra system I: the user language, J. Symb. Comput., 24, 235-265, 1997 ·Zbl 0898.68039
[9]Bray, J. N.; Holt, D. F.; Roney-Dougal, C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Series, vol. 407, 2013, Cambridge University Press ·Zbl 1303.20053
[10]Breuer, T., The GAP Character Table Library, Version 1.3.3, GAP package, 2022
[11]Burness, T. C.; Giudici, M., Classical Groups, Derangements and Primes, Aust. Math. Soc. Lecture Series, vol. 25, 2016, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1372.11001
[12]Burness, T. C.; Guralnick, R. M.; Saxl, J., Base sizes for \(\mathcal{S} \)-actions of finite classical groups, Isr. J. Math., 199, 711-756, 2014 ·Zbl 1321.20002
[13]Burness, T. C.; Tong-Viet, H. P., Primitive permutation groups and derangements of prime power order, Manuscr. Math., 150, 255-291, 2016 ·Zbl 1345.20002
[14]Cohen, A. M.; Liebeck, M. W.; Saxl, J.; Seitz, G. M., The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. Lond. Math. Soc., 64, 21-48, 1992 ·Zbl 0706.20037
[15]Craven, D. A., The maximal subgroups of the exceptional groups \(F_4(q), E_6(q)\) and \({}^2E_6(q)\) and related almost simple groups, Invent. Math., 234, 637-719, 2023 ·Zbl 1523.20051
[16]Craven, D. A., On the maximal subgroups of \(E_7(q)\) and related almost simple groups
[17]D.A. Craven, On the maximal subgroups of \(E_8(q)\) and related almost simple groups, in preparation. ·Zbl 1523.20051
[18]Craven, D. A., On medium-rank Lie primitive and maximal subgroups of exceptional groups of Lie type, Mem. Am. Math. Soc., 288, 1434, 2023, v+213 pp. ·Zbl 1522.20001
[19]Dietrich, H.; Lee, M.; Popiel, T., The maximal subgroups of the Monster, 2023
[20]DiMuro, J., On prime power order elements of general linear groups, J. Algebra, 367, 222-236, 2012 ·Zbl 1267.20068
[21]Gaschütz, W., Über die Φ-Untergruppe endlicher Gruppen, Math. Z., 58, 160-170, 1953 ·Zbl 0050.02202
[22]Ginsberg, H., Groups with strongly p-embedded subgroups and cyclic Sylow p-subgroups, J. Group Theory, 17, 175-190, 2014 ·Zbl 1305.20014
[23]Gross, F., Automorphisms which centralize a Sylow p-subgroup, J. Algebra, 77, 202-233, 1982 ·Zbl 0489.20019
[24]Guest, S.; Morris, J.; Praeger, C. E.; Spiga, P., On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Am. Math. Soc., 367, 7665-7694, 2015 ·Zbl 1330.20002
[25]Guralnick, R. M., Subgroups of prime power index in a simple group, J. Algebra, 81, 304-311, 1983 ·Zbl 0515.20011
[26]Guralnick, R. M.; Malle, G., Variations on the Baer-Suzuki theorem, Math. Z., 279, 981-1006, 2015 ·Zbl 1321.20018
[27]Guralnick, R. M.; Penttila, T.; Praeger, C. E.; Saxl, J., Linear groups with orders having certain large prime divisors, Proc. Lond. Math. Soc., 78, 167-214, 1999 ·Zbl 1041.20035
[28]Guralnick, R. M.; Robinson, G. R., On extensions of the Baer-Suzuki theorem, Isr. J. Math., 82, 281-297, 1993 ·Zbl 0794.20029
[29]Guralnick, R. M.; Saxl, J., Generation of finite almost simple groups by conjugates, J. Algebra, 268, 519-571, 2003 ·Zbl 1037.20016
[30]Guralnick, R. M.; Tong-Viet, H. P.; Tracey, G., Weakly subnormal subgroups and variations of the Baer-Suzuki theorem, 2024
[31]R.M. Guralnick, G. Tracey, Elements of finite groups contained in a unique maximal subgroup, in preparation.
[32]Hiss, G.; Malle, G., Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math., 4, 22-63, 2001 ·Zbl 0979.20012
[33]Isaacs, I. M., Finite Group Theory, Graduate Studies in Mathematics, vol. 92, 2008, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1169.20001
[34]Jones, G. A., Primitive permutation groups containing a cycle, Bull. Aust. Math. Soc., 89, 159-165, 2014 ·Zbl 1297.20003
[35]Kantor, W. M., Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra, 106, 15-45, 1987 ·Zbl 0606.20003
[36]Kleidman, P. B.; Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Series, vol. 129, 1990, Cambridge University Press ·Zbl 0697.20004
[37]Liebeck, M. W.; Praeger, C. E.; Saxl, J., A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra, 111, 365-383, 1987 ·Zbl 0632.20011
[38]Liebeck, M. W.; Saxl, J., The primitive permutation groups of odd degree, J. Lond. Math. Soc., 31, 250-264, 1985 ·Zbl 0573.20004
[39]Liebeck, M. W.; Saxl, J.; Seitz, G. M., Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. Lond. Math. Soc., 65, 297-325, 1992 ·Zbl 0776.20012
[40]Liebeck, M. W.; Seitz, G. M., On the subgroup structure of exceptional groups of Lie type, Trans. Am. Math. Soc., 350, 3409-3482, 1998 ·Zbl 0905.20031
[41]Liebeck, M. W.; Seitz, G. M., On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math., 515, 25-72, 1999 ·Zbl 0980.20034
[42]Liebeck, M. W.; Seitz, G. M., A survey of maximal subgroups of exceptional groups of Lie type, (Groups, Combinatorics & Geometry. Groups, Combinatorics & Geometry, Durham, 2001, 2003, World Sci. Publ.: World Sci. Publ. River Edge, NJ), 139-146 ·Zbl 1032.20010
[43]Lübeck, F., Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math., 4, 135-169, 2001 ·Zbl 1053.20008
[44]Malle, G., The maximal subgroups of \({}^2F_4( q^2)\), J. Algebra, 139, 52-69, 1991 ·Zbl 0725.20014
[45]Thompson, J. G., Finite groups with fixed-point-free automorphisms of prime order, Proc. Natl. Acad. Sci. USA, 45, 578-581, 1959 ·Zbl 0086.25101
[46]Tiep, P. H., Low dimensional representations of finite quasisimple groups, (Groups, Combinatorics & Geometry. Groups, Combinatorics & Geometry, Durham, 2001, 2003, World Sci. Publ.: World Sci. Publ. River Edge, NJ), 277-294 ·Zbl 1032.20008
[47]Wilson, R. A., Maximal subgroups of sporadic groups, (Finite Simple Groups: Thirty Years of the Atlas and Beyond. Finite Simple Groups: Thirty Years of the Atlas and Beyond, Contemp. Math., vol. 694, 2017, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 57-72 ·Zbl 1448.20018
[48]Zsigmondy, K., Zur Theorie der Potenzreste, Monatshefte Math. Phys., 3, 265-284, 1892 ·JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp