Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Cyclotomic and abelian points in backward orbits of rational functions.(English)Zbl 1536.37089

Summary: We prove several results on backward orbits of rational functions over number fields. First, we show that if \(K\) is a number field, \( \phi \in K(x)\) and \(\alpha \in K\) then the extension of \(K\) generated by the abelian points (i.e. points that generate an abelian extension of \(K\)) in the backward orbit of \(\alpha\) is ramified only at finitely many primes. This has the immediate strong consequence that if all points in the backward orbit of \(\alpha\) are abelian then \(\phi\) is post-critically finite. We use this result to prove two facts: on the one hand, if \(\phi \in \mathbb{Q}(x)\) is a quadratic rational function not conjugate over \(\mathbb{Q}^{\mathrm{ab}}\) to a power or a Chebyshev map and all preimages of \(\alpha\) are abelian, we show that \(\phi\) is \(\mathbb{Q} \)-conjugate to one of two specific quadratic functions, in the spirit of a recent conjecture ofJ. Andrews andC. Petsche [Algebra Number Theory 14, No. 7, 1981–1999 (2020;Zbl 1465.11218)]. On the other hand we provide conditions on a quadratic rational function in \(K(x)\) for the backward orbit of a point \(\alpha\) to only contain finitely many cyclotomic preimages, extending previous results of the second author. Finally, we give necessary and sufficient conditions for a triple \((\phi, K, \alpha)\), where \(\phi\) is a \(K\)-Lattès map over a number field \(K\) and \(\alpha \in K\), for the whole backward orbit of \(\alpha\) to only contain abelian points.

MSC:

37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
37P15 Dynamical systems over global ground fields
11R18 Cyclotomic extensions
11R20 Other abelian and metabelian extensions

Citations:

Zbl 1465.11218

Software:

Magma

Cite

References:

[1]Aliev, I.; Smyth, C., Solving algebraic equations in roots of unity. Forum Math., 3, 641-665 (2012) ·Zbl 1297.11068
[2]Anderson, J.; Hamblen, S.; Poonen, B.; Walton, L., Local arboreal representations. Int. Math. Res. Not., 5974-5994 (2018) ·Zbl 1452.11140
[3]Andrews, J.; Petsche, C., Abelian extensions in dynamical Galois theory. Algebra Number Theory, 7, 1981-1999 (2020) ·Zbl 1465.11218
[4]Benedetto, R.; Ingram, P.; Jones, R.; Levy, A., Attracting cycles in \(p\)-adic dynamics and height bounds for postcritically finite maps. Duke Math. J., 13, 2325-2356 (2014) ·Zbl 1323.37058
[5]Benedetto, R.; Ingram, P.; Jones, R.; Manes, M.; Silverman, J. H.; Tucker, T. J., Current trends and open problems in arithmetic dynamics. Bull. Am. Math. Soc. (N.S.), 4, 611-685 (2019) ·Zbl 1468.37001
[6]Benedetto, R. L., Dynamics in One Non-archimedean Variable. Graduate Studies in Mathematics (2019), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1426.37001
[7]Benedetto, R. L.; Juul, J., Odoni’s conjecture for number fields. Bull. Lond. Math. Soc., 2, 237-250 (2019) ·Zbl 1470.11289
[8]Bombieri, E.; Gubler, W., Heights in Diophantine Geometry. New Mathematical Monographs (2006), Cambridge University Press ·Zbl 1115.11034
[9]Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language. Computational Algebra and Number Theory. J. Symb. Comput., 3-4, 235-265 (1997) ·Zbl 0898.68039
[10]Boston, N.; Jones, R., Arboreal Galois representations. Geom. Dedic., 27-35 (2007) ·Zbl 1206.11069
[11]Bridy, A.; Doyle, J. R.; Ghioca, D.; Hsia, L.-C.; Tucker, T. J., Finite index theorems for iterated Galois groups of unicritical polynomials. Trans. Am. Math. Soc., 1, 733-752 (2021) ·Zbl 1457.37114
[12]Bridy, A.; Ingram, P.; Jones, R.; Juul, J.; Levy, A.; Manes, M.; Rubinstein-Salzedo, S.; Silverman, J. H., Finite ramification for preimage fields of post-critically finite morphisms. Math. Res. Lett., 6, 1633-1647 (2017) ·Zbl 1391.14004
[13]Chen, E., Avoiding algebraic integers of bounded house in orbits of rational functions over cyclotomic closures. Proc. Am. Math. Soc., 10, 4189-4198 (2018) ·Zbl 1441.11273
[14]Dvornicich, R.; Zannier, U., Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps). Duke Math. J., 3, 527-554 (2007) ·Zbl 1127.11040
[15]Fein, B.; Schacher, M., Properties of iterates and composites of polynomials. J. Lond. Math. Soc., 3, 489-497 (1996), 12 ·Zbl 0865.12003
[16]Ferraguti, A., The set of stable primes for polynomial sequences with large Galois group. Proc. Am. Math. Soc., 7, 2773-2784 (2018) ·Zbl 1442.11150
[17]Ferraguti, A., A survey on abelian dynamical Galois groups. Rend. Semin. Mat. Univ. Politec. Torino, 1, 41-54 (2022) ·Zbl 1519.37113
[18]Ferraguti, A.; Micheli, G., An equivariant isomorphism theorem for mod \(\mathfrak{p}\) reductions of arboreal Galois representations. Trans. Am. Math. Soc., 12, 8525-8542 (2020) ·Zbl 1464.37091
[19]Ferraguti, A.; Pagano, C., Constraining images of quadratic arboreal representations. Int. Math. Res. Not., 8486-8510 (2020) ·Zbl 1465.11219
[20]Fuchs, C.; Zannier, U., Composite rational functions expressible with few terms. J. Eur. Math. Soc., 1, 175-208 (2012) ·Zbl 1244.12001
[21]Hindes, W., Average Zsigmondy sets, dynamical Galois groups, and the Kodaira-Spencer map. Trans. Am. Math. Soc., 9, 6391-6410 (2018) ·Zbl 1394.37130
[22]Jones, R., The density of prime divisors in the arithmetic dynamics of quadratic polynomials. J. Lond. Math. Soc. (2), 2, 523-544 (2008) ·Zbl 1193.37144
[23]Jones, R.; Levy, A., Eventually stable rational functions. Int. J. Number Theory, 9, 2299-2318 (2017) ·Zbl 1391.37072
[24]Juul, J.; Krieger, H.; Looper, N.; Manes, M.; Thompson, B.; Walton, L., Arboreal representations for rational maps with few critical points, 133-151 ·Zbl 1436.11135
[25]König, J.; Neftin, D., The admissibility of \(M_{11}\) over number fields. J. Pure Appl. Algebra, 9, 2456-2464 (2018) ·Zbl 1453.12005
[26]Loxton, J. H., On the maximum modulus of cyclotomic integers. Acta Arith., 69-85 (1972) ·Zbl 0217.04203
[27]Lozano-Robledo, Á., Galois representations attached to elliptic curves with complex multiplication. Algebra Number Theory, 4, 777-837 (2022) ·Zbl 1504.14064
[28]Lukas, D.; Manes, M.; Yap, D., A census of quadratic post-critically finite rational functions defined over \(\mathbb{Q} \). LMS J. Comput. Math., suppl, A:314-329 (2014) ·Zbl 1369.37091
[29]Lukina, O., Galois groups and Cantor actions. Trans. Am. Math. Soc., 3, 1579-1621 (2021) ·Zbl 1464.37012
[30]Mizusawa, Y.; Yamamoto, K., Iterated towers of number fields by a quadratic map defined over the Gaussian rationals. Proc. Jpn. Acad., Ser. A, Math. Sci., 8, 63-68 (2020) ·Zbl 1467.11100
[31]Odoni, R. W.K., The Galois theory of iterates and composites of polynomials. Proc. Lond. Math. Soc. (3), 3, 385-414 (1985) ·Zbl 0622.12011
[32]Ostafe, A., On roots of unity in orbits of rational functions. Proc. Am. Math. Soc., 5, 1927-1936 (2017) ·Zbl 1360.11111
[33]Ostafe, A.; Sha, M.; Shparlinski, I. E.; Zannier, U., On multiplicative dependence of values of rational functions and a generalization of the Northcott theorem. Mich. Math. J., 2, 385-407 (2019) ·Zbl 1442.11142
[34]Rosen, M., Number Theory in Function Fields. Graduate Texts in Mathematics (2002), Springer-Verlag: Springer-Verlag New York ·Zbl 1043.11079
[35]Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics (1994), Springer-Verlag: Springer-Verlag New York ·Zbl 0911.14015
[36]Silverman, J. H., Rational functions with a polynomial iterate. J. Algebra, 1, 102-110 (1996) ·Zbl 0848.11049
[37]Silverman, J. H., A lower bound for the canonical height on elliptic curves over abelian extensions. J. Number Theory, 2, 353-372 (2004) ·Zbl 1053.11052
[38]Silverman, J. H., The Arithmetic of Dynamical Systems. Graduate Texts in Mathematics (2007), Springer: Springer New York ·Zbl 1130.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp