[1] | Aliev, I.; Smyth, C., Solving algebraic equations in roots of unity. Forum Math., 3, 641-665 (2012) ·Zbl 1297.11068 |
[2] | Anderson, J.; Hamblen, S.; Poonen, B.; Walton, L., Local arboreal representations. Int. Math. Res. Not., 5974-5994 (2018) ·Zbl 1452.11140 |
[3] | Andrews, J.; Petsche, C., Abelian extensions in dynamical Galois theory. Algebra Number Theory, 7, 1981-1999 (2020) ·Zbl 1465.11218 |
[4] | Benedetto, R.; Ingram, P.; Jones, R.; Levy, A., Attracting cycles in \(p\)-adic dynamics and height bounds for postcritically finite maps. Duke Math. J., 13, 2325-2356 (2014) ·Zbl 1323.37058 |
[5] | Benedetto, R.; Ingram, P.; Jones, R.; Manes, M.; Silverman, J. H.; Tucker, T. J., Current trends and open problems in arithmetic dynamics. Bull. Am. Math. Soc. (N.S.), 4, 611-685 (2019) ·Zbl 1468.37001 |
[6] | Benedetto, R. L., Dynamics in One Non-archimedean Variable. Graduate Studies in Mathematics (2019), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1426.37001 |
[7] | Benedetto, R. L.; Juul, J., Odoni’s conjecture for number fields. Bull. Lond. Math. Soc., 2, 237-250 (2019) ·Zbl 1470.11289 |
[8] | Bombieri, E.; Gubler, W., Heights in Diophantine Geometry. New Mathematical Monographs (2006), Cambridge University Press ·Zbl 1115.11034 |
[9] | Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language. Computational Algebra and Number Theory. J. Symb. Comput., 3-4, 235-265 (1997) ·Zbl 0898.68039 |
[10] | Boston, N.; Jones, R., Arboreal Galois representations. Geom. Dedic., 27-35 (2007) ·Zbl 1206.11069 |
[11] | Bridy, A.; Doyle, J. R.; Ghioca, D.; Hsia, L.-C.; Tucker, T. J., Finite index theorems for iterated Galois groups of unicritical polynomials. Trans. Am. Math. Soc., 1, 733-752 (2021) ·Zbl 1457.37114 |
[12] | Bridy, A.; Ingram, P.; Jones, R.; Juul, J.; Levy, A.; Manes, M.; Rubinstein-Salzedo, S.; Silverman, J. H., Finite ramification for preimage fields of post-critically finite morphisms. Math. Res. Lett., 6, 1633-1647 (2017) ·Zbl 1391.14004 |
[13] | Chen, E., Avoiding algebraic integers of bounded house in orbits of rational functions over cyclotomic closures. Proc. Am. Math. Soc., 10, 4189-4198 (2018) ·Zbl 1441.11273 |
[14] | Dvornicich, R.; Zannier, U., Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps). Duke Math. J., 3, 527-554 (2007) ·Zbl 1127.11040 |
[15] | Fein, B.; Schacher, M., Properties of iterates and composites of polynomials. J. Lond. Math. Soc., 3, 489-497 (1996), 12 ·Zbl 0865.12003 |
[16] | Ferraguti, A., The set of stable primes for polynomial sequences with large Galois group. Proc. Am. Math. Soc., 7, 2773-2784 (2018) ·Zbl 1442.11150 |
[17] | Ferraguti, A., A survey on abelian dynamical Galois groups. Rend. Semin. Mat. Univ. Politec. Torino, 1, 41-54 (2022) ·Zbl 1519.37113 |
[18] | Ferraguti, A.; Micheli, G., An equivariant isomorphism theorem for mod \(\mathfrak{p}\) reductions of arboreal Galois representations. Trans. Am. Math. Soc., 12, 8525-8542 (2020) ·Zbl 1464.37091 |
[19] | Ferraguti, A.; Pagano, C., Constraining images of quadratic arboreal representations. Int. Math. Res. Not., 8486-8510 (2020) ·Zbl 1465.11219 |
[20] | Fuchs, C.; Zannier, U., Composite rational functions expressible with few terms. J. Eur. Math. Soc., 1, 175-208 (2012) ·Zbl 1244.12001 |
[21] | Hindes, W., Average Zsigmondy sets, dynamical Galois groups, and the Kodaira-Spencer map. Trans. Am. Math. Soc., 9, 6391-6410 (2018) ·Zbl 1394.37130 |
[22] | Jones, R., The density of prime divisors in the arithmetic dynamics of quadratic polynomials. J. Lond. Math. Soc. (2), 2, 523-544 (2008) ·Zbl 1193.37144 |
[23] | Jones, R.; Levy, A., Eventually stable rational functions. Int. J. Number Theory, 9, 2299-2318 (2017) ·Zbl 1391.37072 |
[24] | Juul, J.; Krieger, H.; Looper, N.; Manes, M.; Thompson, B.; Walton, L., Arboreal representations for rational maps with few critical points, 133-151 ·Zbl 1436.11135 |
[25] | König, J.; Neftin, D., The admissibility of \(M_{11}\) over number fields. J. Pure Appl. Algebra, 9, 2456-2464 (2018) ·Zbl 1453.12005 |
[26] | Loxton, J. H., On the maximum modulus of cyclotomic integers. Acta Arith., 69-85 (1972) ·Zbl 0217.04203 |
[27] | Lozano-Robledo, Á., Galois representations attached to elliptic curves with complex multiplication. Algebra Number Theory, 4, 777-837 (2022) ·Zbl 1504.14064 |
[28] | Lukas, D.; Manes, M.; Yap, D., A census of quadratic post-critically finite rational functions defined over \(\mathbb{Q} \). LMS J. Comput. Math., suppl, A:314-329 (2014) ·Zbl 1369.37091 |
[29] | Lukina, O., Galois groups and Cantor actions. Trans. Am. Math. Soc., 3, 1579-1621 (2021) ·Zbl 1464.37012 |
[30] | Mizusawa, Y.; Yamamoto, K., Iterated towers of number fields by a quadratic map defined over the Gaussian rationals. Proc. Jpn. Acad., Ser. A, Math. Sci., 8, 63-68 (2020) ·Zbl 1467.11100 |
[31] | Odoni, R. W.K., The Galois theory of iterates and composites of polynomials. Proc. Lond. Math. Soc. (3), 3, 385-414 (1985) ·Zbl 0622.12011 |
[32] | Ostafe, A., On roots of unity in orbits of rational functions. Proc. Am. Math. Soc., 5, 1927-1936 (2017) ·Zbl 1360.11111 |
[33] | Ostafe, A.; Sha, M.; Shparlinski, I. E.; Zannier, U., On multiplicative dependence of values of rational functions and a generalization of the Northcott theorem. Mich. Math. J., 2, 385-407 (2019) ·Zbl 1442.11142 |
[34] | Rosen, M., Number Theory in Function Fields. Graduate Texts in Mathematics (2002), Springer-Verlag: Springer-Verlag New York ·Zbl 1043.11079 |
[35] | Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics (1994), Springer-Verlag: Springer-Verlag New York ·Zbl 0911.14015 |
[36] | Silverman, J. H., Rational functions with a polynomial iterate. J. Algebra, 1, 102-110 (1996) ·Zbl 0848.11049 |
[37] | Silverman, J. H., A lower bound for the canonical height on elliptic curves over abelian extensions. J. Number Theory, 2, 353-372 (2004) ·Zbl 1053.11052 |
[38] | Silverman, J. H., The Arithmetic of Dynamical Systems. Graduate Texts in Mathematics (2007), Springer: Springer New York ·Zbl 1130.37001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.