Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the log abundance for compact Kähler threefolds.(English)Zbl 1536.14012

The Abundance Conjecture in algebraic geometry asserts that if the caonical divisor \(K_X\) of a projective manifold \(X\) is nef, then \(K_X\) is semi-ample; i.e., \(|-mK_X|\) is base point free for some \(m>0\). This is one of the most important conjectures in algebraic geometry and it has many applications.
This conjecture is classically known for surfaces and it is confirmed for threefold byY. Miyaoka [Compos. Math. 68, No. 2, 203–220 (1988;Zbl 0681.14019)],Y. Miyaoka [Math. Ann. 281, No. 2, 325–332 (1988;Zbl 0625.14023)] andY. Kawamata [Invent. Math. 108, No. 2, 229–246 (1992;Zbl 0777.14011)], and it is still wide open in dimension at least four. Moreover, inspired by the minimal model program, it is also expected that the abundance conjecture also holds for log canonical pairs. This is again confirmed in dimension at most three [S. Keel et al., Duke Math. J. 75, No. 1, 99–119 (1994;Zbl 0818.14007)].
On the other hand, in the last decade, the minimal model program was established for Kähler manifolds byA. Höring andT. Peternell [Invent. Math. 203, No. 1, 217–264 (2016;Zbl 1337.32031)], which are generalisations of projective manifolds. Also the Abundance Conjecture is also confirmed for Kähler threefolds with terminal singualrities and numerical dimension not equal to 2 byF. Campana et al. [Ann. Sci. Éc. Norm. Supér. (4) 49, No. 4, 971–1025 (2016;Zbl 1386.32020)].
In the paper under review, the authors proves the Abundance Conjecutre for log canonocal Kähler pair \((X,\Delta)\) in the case where \(\nu(K_X+\Delta)\not=2\), and hence genralises the result of Campana, Höring and Peternell in the terminal case. We also remark that the remaining case is solved by the same authors in a recent preprint [O. Das andW. Ou, “On the Log Abundance for Compact {Kähler} threefolds II”, Preprint,arXiv:2306.00671].
Reviewer: Jie Liu (Beijing)

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
32J17 Compact complex \(3\)-folds
32J27 Compact Kähler manifolds: generalizations, classification

Cite

References:

[1]Ambro, F., The moduli \(b\)-divisor of an lc-trivial fibration, Compos. Math., 141, 2, 385-403 (2005) ·Zbl 1094.14025 ·doi:10.1112/S0010437X04001071
[2]Boucksom, S.; Demailly, J-P; Păun, M.; Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 2, 201-248 (2013) ·Zbl 1267.32017 ·doi:10.1090/S1056-3911-2012-00574-8
[3]Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, second edition (2004) ·Zbl 1036.14016
[4]Boucksom, S., Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4), 37, 1, 45-76 (2004) ·Zbl 1054.32010 ·doi:10.1016/j.ansens.2003.04.002
[5]Cao, J.; Höring, A., Rational curves on compact Kähler manifolds, J. Differ. Geom., 114, 1, 1-39 (2020) ·Zbl 1442.14055 ·doi:10.4310/jdg/1577502017
[6]Campana, F.; Höring, A.; Peternell, T., Abundance for Kähler threefolds, Ann. Sci. Éc. Norm. Supér. (4), 49, 4, 971-1025 (2016) ·Zbl 1386.32020 ·doi:10.24033/asens.2301
[7]Campana, F., Höring, A., Peternell, T.: Addendum to the paper: abundance for Kähler threefolds. https://math.unice.fr/ hoering/articles/addendum-abundance.pdf (2021) ·Zbl 1386.32020
[8]Debarre, O., Higher-Dimensional Algebraic Geometry (2001), New York: Universitext, Springer, New York ·Zbl 0978.14001 ·doi:10.1007/978-1-4757-5406-3
[9]Demailly, J-P, Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409 (1992) ·Zbl 0777.32016
[10]Demailly, J.-P.: \(L^2\) vanishing theorems for positive line bundles and adjunction theory. In: Transcendental Methods in Algebraic Geometry (Cetraro, 1994), Volume 1646 of Lecture Notes in Mathematics, pp. 1-97. Springer, Berlin (1996) ·Zbl 0883.14005
[11]Demailly, J-P; Peternell, T., A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds, J. Differ. Geom., 63, 2, 231-277 (2003) ·Zbl 1077.32504 ·doi:10.4310/jdg/1090426678
[12]Demailly, J-P; Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math. (2), 159, 3, 1247-1274 (2004) ·Zbl 1064.32019 ·doi:10.4007/annals.2004.159.1247
[13]Das, O.; Waldron, J., On the abundance problem for 3-folds in characteristic \(p>5\), Math. Z., 292, 3-4, 937-946 (2019) ·Zbl 1462.14017 ·doi:10.1007/s00209-018-2110-5
[14]Fujita, T.: Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(2), 353-378 (1983) ·Zbl 0561.32012
[15]Fujino, O., Abundance theorem for semi log canonical threefolds, Duke Math. J., 102, 3, 513-532 (2000) ·Zbl 0986.14007 ·doi:10.1215/S0012-7094-00-10237-2
[16]Fujino, O.: Special termination and reduction to pl flips, in Flips for 3-folds and 4-folds, Volume 35 of Oxford Lecture Series in Mathematics and Its Applications, pp. 63-75. Oxford University Press, Oxford (2007) ·Zbl 1286.14025
[17]Fujino, O.: On Kawamata’s theorem, in Classification of algebraic varieties, EMS Ser. Congr. Rep., pp. 305-315, Eur. Math. Soc., Zürich (2011) ·Zbl 1213.14015
[18]Fujiki, A.: Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14(1), 1-52 (1978/79) ·Zbl 0409.32016
[19]Grothendieck, A., Raynaud, M.: Revêtements étales et groupe fondamental (SGA 1), arXiv Mathematics e-prints , math/0206203. arXiv:math/0206203 (2002)
[20]Hironaka, H., Flattening theorem in complex-analytic geometry, Am. J. Math., 97, 503-547 (1975) ·Zbl 0307.32011 ·doi:10.2307/2373721
[21]Hacon, CD; Mckernan, J., On Shokurov’s rational connectedness conjecture, Duke Math. J., 138, 1, 119-136 (2007) ·Zbl 1128.14028 ·doi:10.1215/S0012-7094-07-13813-4
[22]Höring, A.; Peternell, T., Mori fibre spaces for Kähler threefolds, J. Math. Sci. Univ. Tokyo, 22, 1, 219-246 (2015) ·Zbl 1338.32019
[23]Höring, A.; Peternell, T., Minimal models for Kähler threefolds, Invent. Math., 203, 1, 217-264 (2016) ·Zbl 1337.32031 ·doi:10.1007/s00222-015-0592-x
[24]Kawamata, Y., Pluricanonical systems on minimal algebraic varieties, Invent. Math., 79, 567-588 (1985) ·Zbl 0593.14010 ·doi:10.1007/BF01388524
[25]Kawamata, Y., Crepant blowing-up of \(3\)-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math. (2), 127, 1, 93-163 (1988) ·Zbl 0651.14005 ·doi:10.2307/1971417
[26]Kawamata, Y., On the length of an extremal rational curve, Invent. Math., 105, 3, 609-611 (1991) ·Zbl 0751.14007 ·doi:10.1007/BF01232281
[27]Kawamata, Y., Abundance theorem for minimal threefolds, Invent. Math., 108, 2, 229-246 (1992) ·Zbl 0777.14011 ·doi:10.1007/BF02100604
[28]Kawamata, Y., Termination of log flips for algebraic \(3\)-folds, Int. J. Math., 3, 5, 653-659 (1992) ·Zbl 0814.14016 ·doi:10.1142/S0129167X92000308
[29]Kollár, J., Mori, S.: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original ·Zbl 0926.14003
[30]Keel, S.; Matsuki, K.; McKernan, J., Log abundance theorem for threefolds, Duke Math. J., 75, 1, 99-119 (1994) ·Zbl 0818.14007 ·doi:10.1215/S0012-7094-94-07504-2
[31]Keel, S., Matsuki, K., McKernan, J.: Corrections to: “Log abundance theorem for threefolds” [Duke Math. J. 75 (1994), no. 1, 99-119; MR1284817], Duke Math. J. 122(3), 625-630 (2004) ·Zbl 1063.14501
[32]Kollár, J.: Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992) ·Zbl 0814.14038
[33]Kollár, J.: Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer, Berlin (1996) ·Zbl 0877.14012
[34]Kollár, J.: Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, With a collaboration of Sándor Kovács (2013) ·Zbl 1282.14028
[35]Lazarsfeld, R.: Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, 2004, Classical setting: line bundles and linear series ·Zbl 1093.14501
[36]Lazić, V., Peternell, T.: Abundance for varieties with many differential forms, Épijournal de Géométrie Algébrique Volume 2 (2018) ·Zbl 1412.14010
[37]Manaresi, M., Sard and Bertini type theorems for complex spaces, Ann. Mat. Pura Appl., 4, 131, 265-279 (1982) ·Zbl 0498.32013 ·doi:10.1007/BF01765156
[38]Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety, in Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pp. 449-476, North-Holland, Amsterdam (1987) ·Zbl 0648.14006
[39]Miyaoka, Y., Abundance conjecture for \(3\)-folds: case \(\nu =1\), Compos. Math., 68, 2, 203-220 (1988) ·Zbl 0681.14019
[40]Miyaoka, Y., On the Kodaira dimension of minimal threefolds, Math. Ann., 281, 2, 325-332 (1988) ·Zbl 0625.14023 ·doi:10.1007/BF01458437
[41]Nakayama, N.: The lower semicontinuity of the plurigenera of complex varieties. In: Algebraic Geometry, Sendai, 1985, Volume 10 of Advanced Studies in Pure Mathematics, pp. 551-590, North-Holland, Amsterdam (1987) ·Zbl 0649.14003
[42]Namikawa, Y., Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Int. J. Math., 13, 2, 125-135 (2002) ·Zbl 1055.32015 ·doi:10.1142/S0129167X02001277
[43]Paun, M., Sur l’effectivité numérique des images inverses de fibrés en droites, Math. Ann., 310, 3, 411-421 (1998) ·Zbl 1023.32014 ·doi:10.1007/s002080050154
[44]Sakai, F., Weil divisors on normal surfaces, Duke Math. J., 51, 4, 877-887 (1984) ·Zbl 0602.14006 ·doi:10.1215/S0012-7094-84-05138-X
[45]Shokurov, VV, 3-fold log flips. Appendix by Yujiro Kawamata: the minimal discrepancy coefficients of terminal singularities in dimension three, Russ. Acad. Sci. Izv. Math., 40, 1, 95-202 (1992) ·Zbl 0785.14023
[46]Varouchas, J., Kähler spaces and proper open morphisms, Math. Ann., 283, 1, 13-52 (1989) ·Zbl 0632.53059 ·doi:10.1007/BF01457500
[47]Wang, J., On the Iitaka conjecture \(C_{n, m}\) for Kähler fibre spaces, Ann. Fac. Sci. Toulouse Math. (6), 30, 4, 813-897 (2021) ·Zbl 1535.32022 ·doi:10.5802/afst.1690
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp