[1] | Ambro, F., The moduli \(b\)-divisor of an lc-trivial fibration, Compos. Math., 141, 2, 385-403 (2005) ·Zbl 1094.14025 ·doi:10.1112/S0010437X04001071 |
[2] | Boucksom, S.; Demailly, J-P; Păun, M.; Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 2, 201-248 (2013) ·Zbl 1267.32017 ·doi:10.1090/S1056-3911-2012-00574-8 |
[3] | Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, second edition (2004) ·Zbl 1036.14016 |
[4] | Boucksom, S., Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4), 37, 1, 45-76 (2004) ·Zbl 1054.32010 ·doi:10.1016/j.ansens.2003.04.002 |
[5] | Cao, J.; Höring, A., Rational curves on compact Kähler manifolds, J. Differ. Geom., 114, 1, 1-39 (2020) ·Zbl 1442.14055 ·doi:10.4310/jdg/1577502017 |
[6] | Campana, F.; Höring, A.; Peternell, T., Abundance for Kähler threefolds, Ann. Sci. Éc. Norm. Supér. (4), 49, 4, 971-1025 (2016) ·Zbl 1386.32020 ·doi:10.24033/asens.2301 |
[7] | Campana, F., Höring, A., Peternell, T.: Addendum to the paper: abundance for Kähler threefolds. https://math.unice.fr/ hoering/articles/addendum-abundance.pdf (2021) ·Zbl 1386.32020 |
[8] | Debarre, O., Higher-Dimensional Algebraic Geometry (2001), New York: Universitext, Springer, New York ·Zbl 0978.14001 ·doi:10.1007/978-1-4757-5406-3 |
[9] | Demailly, J-P, Regularization of closed positive currents and intersection theory, J. Algebraic Geom., 1, 3, 361-409 (1992) ·Zbl 0777.32016 |
[10] | Demailly, J.-P.: \(L^2\) vanishing theorems for positive line bundles and adjunction theory. In: Transcendental Methods in Algebraic Geometry (Cetraro, 1994), Volume 1646 of Lecture Notes in Mathematics, pp. 1-97. Springer, Berlin (1996) ·Zbl 0883.14005 |
[11] | Demailly, J-P; Peternell, T., A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds, J. Differ. Geom., 63, 2, 231-277 (2003) ·Zbl 1077.32504 ·doi:10.4310/jdg/1090426678 |
[12] | Demailly, J-P; Paun, M., Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math. (2), 159, 3, 1247-1274 (2004) ·Zbl 1064.32019 ·doi:10.4007/annals.2004.159.1247 |
[13] | Das, O.; Waldron, J., On the abundance problem for 3-folds in characteristic \(p>5\), Math. Z., 292, 3-4, 937-946 (2019) ·Zbl 1462.14017 ·doi:10.1007/s00209-018-2110-5 |
[14] | Fujita, T.: Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(2), 353-378 (1983) ·Zbl 0561.32012 |
[15] | Fujino, O., Abundance theorem for semi log canonical threefolds, Duke Math. J., 102, 3, 513-532 (2000) ·Zbl 0986.14007 ·doi:10.1215/S0012-7094-00-10237-2 |
[16] | Fujino, O.: Special termination and reduction to pl flips, in Flips for 3-folds and 4-folds, Volume 35 of Oxford Lecture Series in Mathematics and Its Applications, pp. 63-75. Oxford University Press, Oxford (2007) ·Zbl 1286.14025 |
[17] | Fujino, O.: On Kawamata’s theorem, in Classification of algebraic varieties, EMS Ser. Congr. Rep., pp. 305-315, Eur. Math. Soc., Zürich (2011) ·Zbl 1213.14015 |
[18] | Fujiki, A.: Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14(1), 1-52 (1978/79) ·Zbl 0409.32016 |
[19] | Grothendieck, A., Raynaud, M.: Revêtements étales et groupe fondamental (SGA 1), arXiv Mathematics e-prints , math/0206203. arXiv:math/0206203 (2002) |
[20] | Hironaka, H., Flattening theorem in complex-analytic geometry, Am. J. Math., 97, 503-547 (1975) ·Zbl 0307.32011 ·doi:10.2307/2373721 |
[21] | Hacon, CD; Mckernan, J., On Shokurov’s rational connectedness conjecture, Duke Math. J., 138, 1, 119-136 (2007) ·Zbl 1128.14028 ·doi:10.1215/S0012-7094-07-13813-4 |
[22] | Höring, A.; Peternell, T., Mori fibre spaces for Kähler threefolds, J. Math. Sci. Univ. Tokyo, 22, 1, 219-246 (2015) ·Zbl 1338.32019 |
[23] | Höring, A.; Peternell, T., Minimal models for Kähler threefolds, Invent. Math., 203, 1, 217-264 (2016) ·Zbl 1337.32031 ·doi:10.1007/s00222-015-0592-x |
[24] | Kawamata, Y., Pluricanonical systems on minimal algebraic varieties, Invent. Math., 79, 567-588 (1985) ·Zbl 0593.14010 ·doi:10.1007/BF01388524 |
[25] | Kawamata, Y., Crepant blowing-up of \(3\)-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math. (2), 127, 1, 93-163 (1988) ·Zbl 0651.14005 ·doi:10.2307/1971417 |
[26] | Kawamata, Y., On the length of an extremal rational curve, Invent. Math., 105, 3, 609-611 (1991) ·Zbl 0751.14007 ·doi:10.1007/BF01232281 |
[27] | Kawamata, Y., Abundance theorem for minimal threefolds, Invent. Math., 108, 2, 229-246 (1992) ·Zbl 0777.14011 ·doi:10.1007/BF02100604 |
[28] | Kawamata, Y., Termination of log flips for algebraic \(3\)-folds, Int. J. Math., 3, 5, 653-659 (1992) ·Zbl 0814.14016 ·doi:10.1142/S0129167X92000308 |
[29] | Kollár, J., Mori, S.: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original ·Zbl 0926.14003 |
[30] | Keel, S.; Matsuki, K.; McKernan, J., Log abundance theorem for threefolds, Duke Math. J., 75, 1, 99-119 (1994) ·Zbl 0818.14007 ·doi:10.1215/S0012-7094-94-07504-2 |
[31] | Keel, S., Matsuki, K., McKernan, J.: Corrections to: “Log abundance theorem for threefolds” [Duke Math. J. 75 (1994), no. 1, 99-119; MR1284817], Duke Math. J. 122(3), 625-630 (2004) ·Zbl 1063.14501 |
[32] | Kollár, J.: Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992) ·Zbl 0814.14038 |
[33] | Kollár, J.: Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer, Berlin (1996) ·Zbl 0877.14012 |
[34] | Kollár, J.: Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, With a collaboration of Sándor Kovács (2013) ·Zbl 1282.14028 |
[35] | Lazarsfeld, R.: Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, 2004, Classical setting: line bundles and linear series ·Zbl 1093.14501 |
[36] | Lazić, V., Peternell, T.: Abundance for varieties with many differential forms, Épijournal de Géométrie Algébrique Volume 2 (2018) ·Zbl 1412.14010 |
[37] | Manaresi, M., Sard and Bertini type theorems for complex spaces, Ann. Mat. Pura Appl., 4, 131, 265-279 (1982) ·Zbl 0498.32013 ·doi:10.1007/BF01765156 |
[38] | Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety, in Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pp. 449-476, North-Holland, Amsterdam (1987) ·Zbl 0648.14006 |
[39] | Miyaoka, Y., Abundance conjecture for \(3\)-folds: case \(\nu =1\), Compos. Math., 68, 2, 203-220 (1988) ·Zbl 0681.14019 |
[40] | Miyaoka, Y., On the Kodaira dimension of minimal threefolds, Math. Ann., 281, 2, 325-332 (1988) ·Zbl 0625.14023 ·doi:10.1007/BF01458437 |
[41] | Nakayama, N.: The lower semicontinuity of the plurigenera of complex varieties. In: Algebraic Geometry, Sendai, 1985, Volume 10 of Advanced Studies in Pure Mathematics, pp. 551-590, North-Holland, Amsterdam (1987) ·Zbl 0649.14003 |
[42] | Namikawa, Y., Projectivity criterion of Moishezon spaces and density of projective symplectic varieties, Int. J. Math., 13, 2, 125-135 (2002) ·Zbl 1055.32015 ·doi:10.1142/S0129167X02001277 |
[43] | Paun, M., Sur l’effectivité numérique des images inverses de fibrés en droites, Math. Ann., 310, 3, 411-421 (1998) ·Zbl 1023.32014 ·doi:10.1007/s002080050154 |
[44] | Sakai, F., Weil divisors on normal surfaces, Duke Math. J., 51, 4, 877-887 (1984) ·Zbl 0602.14006 ·doi:10.1215/S0012-7094-84-05138-X |
[45] | Shokurov, VV, 3-fold log flips. Appendix by Yujiro Kawamata: the minimal discrepancy coefficients of terminal singularities in dimension three, Russ. Acad. Sci. Izv. Math., 40, 1, 95-202 (1992) ·Zbl 0785.14023 |
[46] | Varouchas, J., Kähler spaces and proper open morphisms, Math. Ann., 283, 1, 13-52 (1989) ·Zbl 0632.53059 ·doi:10.1007/BF01457500 |
[47] | Wang, J., On the Iitaka conjecture \(C_{n, m}\) for Kähler fibre spaces, Ann. Fac. Sci. Toulouse Math. (6), 30, 4, 813-897 (2021) ·Zbl 1535.32022 ·doi:10.5802/afst.1690 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.