[1] | Amanov, A.; Yeliussizov, D., Determinantal formulas for dual Grothendieck polynomials, Proc. Am. Math. Soc., 150, 10, 4113-4128, 2022 ·Zbl 1504.05291 |
[2] | Assaf, S. H.; McNamara, P. R., A Pieri rule for skew shapes, J. Comb. Theory, Ser. A, 118, 1, 277-290, 2011 ·Zbl 1291.05205 |
[3] | Bender, E. A.; Knuth, D. E., Enumeration of plane partitions, J. Comb. Theory, Ser. A, 13, 40-54, 1972 ·Zbl 0246.05010 |
[4] | Blasiak, J.; Fomin, S., Noncommutative Schur functions, switchboards, and Schur positivity, Sel. Math. New Ser., 23, 1, 727-766, 2017 ·Zbl 1355.05249 |
[5] | Brubaker, B.; Frechette, C.; Hardt, A.; Tibor, E.; Weber, K., Frozen pipes: lattice models for Grothendieck polynomials, Algebraic Combin., 6, 3, 789-833, 2023 ·Zbl 1516.05227 |
[6] | Buch, A. S., A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math., 189, 1, 37-78, 2002 ·Zbl 1090.14015 |
[7] | Buciumas, V.; Scrimshaw, T., Double Grothendieck polynomials and colored lattice models, Int. Math. Res. Not., 10, 7231-7258, 2022 ·Zbl 1491.05196 |
[8] | Chan, M.; Pflueger, N., Combinatorial relations on skew Schur and skew stable Grothendieck polynomials, Algebraic Combin., 4, 1, 175-188, 2021 ·Zbl 1460.05193 |
[9] | Chan, M.; Pflueger, N., Euler characteristics of Brill-Noether varieties, Trans. Am. Math. Soc., 374, 3, 1513-1533, 2021 ·Zbl 1464.14032 |
[10] | Fomin, S.; Greene, C., Noncommutative Schur functions and their applications, vol. 193, (Selected Papers in Honor of Adriano Garsia. Selected Papers in Honor of Adriano Garsia, Taormina, 1994, 1998), 179-200 ·Zbl 1011.05062 |
[11] | Fomin, S.; Kirillov, A. N., The Yang-Baxter equation, symmetric functions, and Schubert polynomials, (Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics. Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics, Florence, 1993, vol. 153, 1996), 123-143 ·Zbl 0852.05078 |
[12] | Galashin, P., A Littlewood-Richardson rule for dual stable Grothendieck polynomials, J. Comb. Theory, Ser. A, 151, 23-35, 2017 ·Zbl 1366.05116 |
[13] | Galashin, P.; Grinberg, D.; Liu, G., Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions, Electron. J. Comb., 23, 3, Article 3.14 pp., 2016 ·Zbl 1344.05148 |
[14] | I.M. Gessel, X.G. Viennot, Determinants, paths, and plane partitions, Preprint, 1989. ·Zbl 0579.05004 |
[15] | Grinberg, D.; Reiner, V., Hopf algebras in combinatorics, Preprint |
[16] | Gunna, A.; Zinn-Justin, P., Vertex models for canonical Grothendieck polynomials and their duals, Algebraic Combin., 6, 1, 109-162, 2023 ·Zbl 1511.05230 |
[17] | Hawkes, G.; Scrimshaw, T., Crystal structures for canonical Grothendieck functions, Algebraic Combin., 3, 3, 727-755, 2020 ·Zbl 1441.05236 |
[18] | Hwang, B.-H.; Jang, J.; Kim, J. S.; Song, M.; Song, U.-K., Refined canonical stable Grothendieck polynomials and their duals, Part 2, Preprint |
[19] | Kim, J. S., Jacobi-Trudi formula for refined dual stable Grothendieck polynomials, J. Comb. Theory, Ser. A, 180, Article 105415 pp., 2021 ·Zbl 1479.05354 |
[20] | Kim, J. S., Jacobi-Trudi formulas for flagged refined dual stable Grothendieck polynomials, Algebraic Combin., 5, 1, 121-148, 2022 ·Zbl 1515.05186 |
[21] | Kirillov, A. N., On some quadratic algebras \(I \frac{ 1}{ 2} \): combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, 12, Article 002 pp., 2016 ·Zbl 1348.05213 |
[22] | Lam, T.; Pylyavskyy, P., Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not., 24, Article rnm125 pp., 2007 ·Zbl 1134.16017 |
[23] | Lascoux, A.; Schützenberger, M.-P., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci., Sér. 1 Math., 295, 11, 629-633, 1982 ·Zbl 0542.14030 |
[24] | Lenart, C., Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb., 4, 1, 67-82, 2000 ·Zbl 0958.05128 |
[25] | Lindström, B., On the vector representations of induced matroids, Bull. Lond. Math. Soc., 5, 85-90, 1973 ·Zbl 0262.05018 |
[26] | Loehr, N. A.; Remmel, J. B., A computational and combinatorial exposé of plethystic calculus, J. Algebraic Comb., 33, 2, 163-198, 2011 ·Zbl 1229.05275 |
[27] | Macdonald, I. G., Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, 1995, The Clarendon Press Oxford University Press: The Clarendon Press Oxford University Press New York ·Zbl 0899.05068 |
[28] | Matsumura, T., An algebraic proof of determinant formulas of Grothendieck polynomials, Proc. Jpn. Acad., Ser. A, Math. Sci., 93, 8, 82-85, 2017 ·Zbl 1379.05121 |
[29] | Matsumura, T., Flagged Grothendieck polynomials, J. Algebraic Comb., 49, 3, 209-228, 2019 ·Zbl 1416.05297 |
[30] | Monical, C.; Pechenik, O.; Scrimshaw, T., Crystal structures for symmetric Grothendieck polynomials, (Transformation Groups, 2020) |
[31] | Motegi, K.; Sakai, K., Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, 46, 35, Article 355201 pp., 2013 ·Zbl 1278.82042 |
[32] | Motegi, K.; Scrimshaw, T., Refined dual Grothendieck polynomials, integrability, and the Schur measure, Preprint ·Zbl 1505.05134 |
[33] | Pan, J.; Pappe, J.; Poh, W.; Schilling, A., Uncrowding algorithm for hook-valued tableaux, Ann. Comb., 26, 1, 261-301, 2022 ·Zbl 1491.05195 |
[34] | Reiner, V.; Tenner, B. E.; Yong, A., Poset edge densities, nearly reduced words, and barely set-valued tableaux, J. Comb. Theory, Ser. A, 158, 66-125, 2018 ·Zbl 1391.05269 |
[35] | M. Shimozono, M. Zabrocki, Stable Grothendieck symmetric functions and Ω-calculus, Preprint. ·Zbl 1122.17018 |
[36] | Stanley, R. P., Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, 1999, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0928.05001 |
[37] | Stanley, R. P., Enumerative Combinatorics, vol. 1, 2011, Cambridge University Press: Cambridge University Press New York/Cambridge |
[38] | Wheeler, M.; Zinn-Justin, P., Littlewood-Richardson coefficients for Grothendieck polynomials from integrability, J. Reine Angew. Math., 757, 159-195, 2019 ·Zbl 1428.05323 |
[39] | Yeliussizov, D., Duality and deformations of stable Grothendieck polynomials, J. Algebraic Comb., 45, 1, 295-344, 2017 ·Zbl 1355.05263 |
[40] | Yeliussizov, D., Dual Grothendieck polynomials via last-passage percolation, C. R. Math. Acad. Sci. Paris, 358, 4, 497-503, 2020 ·Zbl 1444.05145 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.