Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Refined canonical stable Grothendieck polynomials and their duals. I.(English)Zbl 1536.05462

Summary: In this paper we introduce refined canonical stable Grothendieck polynomials and their duals with two infinite sequences of parameters. These polynomials unify several generalizations of Grothendieck polynomials including canonical stable Grothendieck polynomials due toD. Yeliussizov [J. Algebr. Comb. 45, No. 1, 295–344 (2017;Zbl 1355.05263)], refined Grothendieck polynomials due toM. Chan andN. Pflueger [Algebr. Comb. 4, No. 1, 175–188 (2021;Zbl 1460.05193)], and refined dual Grothendieck polynomials due toP. Galashin et al. [Electron. J. Comb. 23, No. 3, Research Paper P3.14, 28 p. (2016;Zbl 1344.05148)]. We give Jacobi-Trudi-like formulas, combinatorial models, Schur expansions, Schur positivity, and dualities of these polynomials.

MSC:

05E05 Symmetric functions and generalizations
05E14 Combinatorial aspects of algebraic geometry
14M15 Grassmannians, Schubert varieties, flag manifolds

Cite

References:

[1]Amanov, A.; Yeliussizov, D., Determinantal formulas for dual Grothendieck polynomials, Proc. Am. Math. Soc., 150, 10, 4113-4128, 2022 ·Zbl 1504.05291
[2]Assaf, S. H.; McNamara, P. R., A Pieri rule for skew shapes, J. Comb. Theory, Ser. A, 118, 1, 277-290, 2011 ·Zbl 1291.05205
[3]Bender, E. A.; Knuth, D. E., Enumeration of plane partitions, J. Comb. Theory, Ser. A, 13, 40-54, 1972 ·Zbl 0246.05010
[4]Blasiak, J.; Fomin, S., Noncommutative Schur functions, switchboards, and Schur positivity, Sel. Math. New Ser., 23, 1, 727-766, 2017 ·Zbl 1355.05249
[5]Brubaker, B.; Frechette, C.; Hardt, A.; Tibor, E.; Weber, K., Frozen pipes: lattice models for Grothendieck polynomials, Algebraic Combin., 6, 3, 789-833, 2023 ·Zbl 1516.05227
[6]Buch, A. S., A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math., 189, 1, 37-78, 2002 ·Zbl 1090.14015
[7]Buciumas, V.; Scrimshaw, T., Double Grothendieck polynomials and colored lattice models, Int. Math. Res. Not., 10, 7231-7258, 2022 ·Zbl 1491.05196
[8]Chan, M.; Pflueger, N., Combinatorial relations on skew Schur and skew stable Grothendieck polynomials, Algebraic Combin., 4, 1, 175-188, 2021 ·Zbl 1460.05193
[9]Chan, M.; Pflueger, N., Euler characteristics of Brill-Noether varieties, Trans. Am. Math. Soc., 374, 3, 1513-1533, 2021 ·Zbl 1464.14032
[10]Fomin, S.; Greene, C., Noncommutative Schur functions and their applications, vol. 193, (Selected Papers in Honor of Adriano Garsia. Selected Papers in Honor of Adriano Garsia, Taormina, 1994, 1998), 179-200 ·Zbl 1011.05062
[11]Fomin, S.; Kirillov, A. N., The Yang-Baxter equation, symmetric functions, and Schubert polynomials, (Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics. Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics, Florence, 1993, vol. 153, 1996), 123-143 ·Zbl 0852.05078
[12]Galashin, P., A Littlewood-Richardson rule for dual stable Grothendieck polynomials, J. Comb. Theory, Ser. A, 151, 23-35, 2017 ·Zbl 1366.05116
[13]Galashin, P.; Grinberg, D.; Liu, G., Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions, Electron. J. Comb., 23, 3, Article 3.14 pp., 2016 ·Zbl 1344.05148
[14]I.M. Gessel, X.G. Viennot, Determinants, paths, and plane partitions, Preprint, 1989. ·Zbl 0579.05004
[15]Grinberg, D.; Reiner, V., Hopf algebras in combinatorics, Preprint
[16]Gunna, A.; Zinn-Justin, P., Vertex models for canonical Grothendieck polynomials and their duals, Algebraic Combin., 6, 1, 109-162, 2023 ·Zbl 1511.05230
[17]Hawkes, G.; Scrimshaw, T., Crystal structures for canonical Grothendieck functions, Algebraic Combin., 3, 3, 727-755, 2020 ·Zbl 1441.05236
[18]Hwang, B.-H.; Jang, J.; Kim, J. S.; Song, M.; Song, U.-K., Refined canonical stable Grothendieck polynomials and their duals, Part 2, Preprint
[19]Kim, J. S., Jacobi-Trudi formula for refined dual stable Grothendieck polynomials, J. Comb. Theory, Ser. A, 180, Article 105415 pp., 2021 ·Zbl 1479.05354
[20]Kim, J. S., Jacobi-Trudi formulas for flagged refined dual stable Grothendieck polynomials, Algebraic Combin., 5, 1, 121-148, 2022 ·Zbl 1515.05186
[21]Kirillov, A. N., On some quadratic algebras \(I \frac{ 1}{ 2} \): combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, 12, Article 002 pp., 2016 ·Zbl 1348.05213
[22]Lam, T.; Pylyavskyy, P., Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not., 24, Article rnm125 pp., 2007 ·Zbl 1134.16017
[23]Lascoux, A.; Schützenberger, M.-P., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci., Sér. 1 Math., 295, 11, 629-633, 1982 ·Zbl 0542.14030
[24]Lenart, C., Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb., 4, 1, 67-82, 2000 ·Zbl 0958.05128
[25]Lindström, B., On the vector representations of induced matroids, Bull. Lond. Math. Soc., 5, 85-90, 1973 ·Zbl 0262.05018
[26]Loehr, N. A.; Remmel, J. B., A computational and combinatorial exposé of plethystic calculus, J. Algebraic Comb., 33, 2, 163-198, 2011 ·Zbl 1229.05275
[27]Macdonald, I. G., Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, 1995, The Clarendon Press Oxford University Press: The Clarendon Press Oxford University Press New York ·Zbl 0899.05068
[28]Matsumura, T., An algebraic proof of determinant formulas of Grothendieck polynomials, Proc. Jpn. Acad., Ser. A, Math. Sci., 93, 8, 82-85, 2017 ·Zbl 1379.05121
[29]Matsumura, T., Flagged Grothendieck polynomials, J. Algebraic Comb., 49, 3, 209-228, 2019 ·Zbl 1416.05297
[30]Monical, C.; Pechenik, O.; Scrimshaw, T., Crystal structures for symmetric Grothendieck polynomials, (Transformation Groups, 2020)
[31]Motegi, K.; Sakai, K., Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, 46, 35, Article 355201 pp., 2013 ·Zbl 1278.82042
[32]Motegi, K.; Scrimshaw, T., Refined dual Grothendieck polynomials, integrability, and the Schur measure, Preprint ·Zbl 1505.05134
[33]Pan, J.; Pappe, J.; Poh, W.; Schilling, A., Uncrowding algorithm for hook-valued tableaux, Ann. Comb., 26, 1, 261-301, 2022 ·Zbl 1491.05195
[34]Reiner, V.; Tenner, B. E.; Yong, A., Poset edge densities, nearly reduced words, and barely set-valued tableaux, J. Comb. Theory, Ser. A, 158, 66-125, 2018 ·Zbl 1391.05269
[35]M. Shimozono, M. Zabrocki, Stable Grothendieck symmetric functions and Ω-calculus, Preprint. ·Zbl 1122.17018
[36]Stanley, R. P., Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, 1999, Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0928.05001
[37]Stanley, R. P., Enumerative Combinatorics, vol. 1, 2011, Cambridge University Press: Cambridge University Press New York/Cambridge
[38]Wheeler, M.; Zinn-Justin, P., Littlewood-Richardson coefficients for Grothendieck polynomials from integrability, J. Reine Angew. Math., 757, 159-195, 2019 ·Zbl 1428.05323
[39]Yeliussizov, D., Duality and deformations of stable Grothendieck polynomials, J. Algebraic Comb., 45, 1, 295-344, 2017 ·Zbl 1355.05263
[40]Yeliussizov, D., Dual Grothendieck polynomials via last-passage percolation, C. R. Math. Acad. Sci. Paris, 358, 4, 497-503, 2020 ·Zbl 1444.05145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp