Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The Merino-Welsh conjecture is false for matroids.(English)Zbl 1536.05257

Summary: The matroidal version of the Merino-Welsh conjecture [C. Merino andD. J. A. Welsh, Ann. Comb. 3, No. 2–4, 417–429 (1999;Zbl 0936.05043)] states that the Tutte polynomial \(T_M(x, y)\) of any matroid \(M\) without loops and coloops satisfies that\[\max(T_M(2, 0), T_M(0, 2)) \geqslant T_M(1, 1).\]Equivalently, if the Merino-Welsh conjecture is true for all matroids without loops and coloops, then the following inequalities are also satisfied for all matroids without loops and coloops:\[T_M(2, 0) + T_M(0, 2) \geqslant 2 T_M(1, 1),\]and\[T_M(2, 0) T_M(0, 2) \geqslant T_M (1, 1)^2.\]We show a counter-example for these inequalities.

MSC:

05C31 Graph polynomials
05B35 Combinatorial aspects of matroids and geometric lattices
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)

Citations:

Zbl 0936.05043

Cite

References:

[1]Beke, C.; Csáji, G. K.; Csikvári, P.; Pituk, S., Permutation Tutte polynomial, 2023, arxiv preprint
[2]Brylawski, T.; Oxley, J., The Tutte polynomial and its applications, (Matroid Applications, vol. 40, 1992), 123-225 ·Zbl 0769.05026
[3]Chávez-Lomelí, L. E.; Merino, C.; Noble, S. D.; Ramírez-Ibáñez, M., Some inequalities for the Tutte polynomial, Eur. J. Comb., 32, 3, 422-433, 2011 ·Zbl 1290.05055
[4]Conde, R.; Merino, C., Comparing the number of acyclic and totally cyclic orientations with that of spanning trees of a graph, Int. J. Math. Comput., 2, 79-89, 2009 ·Zbl 1198.05015
[5]Crapo, H. H., The Tutte polynomial, Aequ. Math., 3, 3, 211-229, 1969 ·Zbl 0197.50202
[6]Ellis-Monaghan, J. A.; Merino, C., Graph polynomials and their applications I: the Tutte polynomial, (Structural Analysis of Complex Networks, 2011, Springer), 219-255 ·Zbl 1221.05002
[7]Ellis-Monaghan, J. A.; Moffatt, I., Handbook of the Tutte Polynomial and Related Topics, 2022, CRC Press ·Zbl 1495.05001
[8]Ferroni, L., Matroids are not Ehrhart positive, Adv. Math., 402, Article 108337 pp., 2022 ·Zbl 1487.52022
[9]Ferroni, L.; Schröter, B., Valuative invariants for large classes of matroids, 2022, arXiv preprint
[10]Ferroni, L.; Schröter, B., The Merino-Welsh conjecture for split matroids, Ann. Comb., 27, 3, 737-748, 2023 ·Zbl 1526.05027
[11]Jackson, B., An inequality for Tutte polynomials, Combinatorica, 30, 69-81, 2010 ·Zbl 1225.05135
[12]Jaeger, F.; Vertigan, D. L.; Welsh, D. J.A., On the Computational Complexity of the Jones and Tutte Polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 108, 35-53, 1990, Cambridge University Press ·Zbl 0747.57006
[13]Knauer, K.; Martínez-Sandoval, L.; Luis Ramírez Alfonsín, J., A Tutte polynomial inequality for lattice path matroids, Adv. Appl. Math., 94, 23-38, 2018 ·Zbl 1377.05089
[14]Kung, J. P.S., Inconsequential results on the Merino-Welsh conjecture for Tutte polynomials, 2021, arXiv preprint
[15]Lin, F., A note on spanning trees and totally cyclic orientations of 3-connected graphs, J. Comb., 4, 1, 95-104, 2013 ·Zbl 1301.05070
[16]Merino, C.; Ibañez, M.; Rodríguez, G., A note on some inequalities for the Tutte polynomial of a matroid, Electron. Notes Discrete Math., 34, 603-607, 2009 ·Zbl 1273.05032
[17]Merino, C.; Ramírez-Ibáñez, M.; Rodríguez-Sánchez, G., The Tutte polynomial of some matroids, Int. J. Comb., 2012, 2012 ·Zbl 1267.05145
[18]Merino, C.; Welsh, D., Forests, colorings and acyclic orientations of the square lattice, Ann. Comb., 3, 2-4, 417-429, 1999 ·Zbl 0936.05043
[19]Noble, S. D.; Royle, G. F., The Merino-Welsh conjecture holds for series-parallel graphs, Eur. J. Comb., 38, 24-35, 2014 ·Zbl 1282.05031
[20]Oxley, J., Matroid Theory, 1992, Oxford University Press ·Zbl 0784.05002
[21]Thomassen, C., Spanning trees and orientations of graphs, J. Comb., 1, 2, 101-111, 2010 ·Zbl 1219.05044
[22]Tutte, W. T., A contribution to the theory of chromatic polynomials, Can. J. Math., 6, 80-91, 1954 ·Zbl 0055.17101
[23]Welsh, D., The Tutte polynomial, Random Struct. Algorithms, 15, 3-4, 210-228, 1999 ·Zbl 0934.05057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp