60H15 | Stochastic partial differential equations (aspects of stochastic analysis) |
60K35 | Interacting random processes; statistical mechanics type models; percolation theory |
35R60 | PDEs with randomness, stochastic partial differential equations |
35Q82 | PDEs in connection with statistical mechanics |
82D60 | Statistical mechanics of polymers |
[1] | T. Alberts, K. Khanin and J. Quastel. The intermediate disorder regime for directed polymers in dimension \(1 + 1\). Ann. Probab. 42 (2014) 1212-1256. Digital Object Identifier: 10.1214/13-AOP858 Google Scholar: Lookup Link MathSciNet: MR3189070 ·Zbl 1292.82014 ·doi:10.1214/13-AOP858 |
[2] | G. Amir, I. Corwin and J. Quastel. Probability distribution of the free energy of the continuum directed random polymer in \(1 + 1\) dimensions. Comm. Pure Appl. Math. 64 (2011) 466-537. Digital Object Identifier: 10.1002/cpa.20347 Google Scholar: Lookup Link MathSciNet: MR2796514 ·Zbl 1222.82070 ·doi:10.1002/cpa.20347 |
[3] | L. Bertini and G. Giacomin. Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 (3) (1997) 571-607. Digital Object Identifier: 10.1007/s002200050044 Google Scholar: Lookup Link MathSciNet: MR1462228 ·Zbl 0874.60059 ·doi:10.1007/s002200050044 |
[4] | F. Caravenna, R. Sun and N. Zygouras. Polynomial chaos and scaling limits of disordered systems. J. Eur. Math. Soc. (JEMS) 19 (2017) 1-65. Digital Object Identifier: 10.4171/JEMS/660 Google Scholar: Lookup Link MathSciNet: MR3584558 zbMATH: 1364.82026 ·Zbl 1364.82026 ·doi:10.4171/JEMS/660 |
[5] | F. Caravenna, R. Sun and N. Zygouras. The two-dimensional KPZ equation in the entire subcritical regime. Ann. Probab. 48 (2020) 1086-1127. Digital Object Identifier: 10.1214/19-AOP1383 Google Scholar: Lookup Link MathSciNet: MR4112709 ·Zbl 1444.60061 ·doi:10.1214/19-AOP1383 |
[6] | S. Chatterjee and A. Dunlap. Constructing a solution of the 2-dimensional KPZ equation. Ann. Probab. 48 (2) (2020) 1014-1055. Digital Object Identifier: 10.1214/19-AOP1382 Google Scholar: Lookup Link MathSciNet: MR4089501 ·Zbl 1434.60148 ·doi:10.1214/19-AOP1382 |
[7] | F. Comets. Directed Polymers in Random Environments. Lect. Notes Math. 2175. Springer, Berlin, 2017. Digital Object Identifier: 10.1007/978-3-319-50487-2 Google Scholar: Lookup Link MathSciNet: MR3444835 ·Zbl 1392.60002 ·doi:10.1007/978-3-319-50487-2 |
[8] | F. Comets, C. Cosco and C. Mukherjee. Renormalizing the Kardar-Parisi-Zhang equation in \(\mathit{d} \geq 3\) in weak disorder. J. Stat. Phys. 179 (2020) 713-728. Digital Object Identifier: 10.1007/s10955-020-02539-7 Google Scholar: Lookup Link MathSciNet: MR4099995 ·Zbl 1434.60278 ·doi:10.1007/s10955-020-02539-7 |
[9] | F. Comets and Q. Liu. Rate of convergence for polymers in a weak disorder. J. Math. Anal. Appl. 455 (2017) 312-335. Digital Object Identifier: 10.1016/j.jmaa.2017.05.043 Google Scholar: Lookup Link MathSciNet: MR3665102 ·Zbl 1373.60164 ·doi:10.1016/j.jmaa.2017.05.043 |
[10] | F. Comets and J. Neveu. The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: The high temperature case. Comm. Math. Phys. 166 (1995) 349-364. MathSciNet: MR1312435 ·Zbl 0811.60098 |
[11] | I. Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1 (2012) 1130001. Digital Object Identifier: 10.1142/S2010326311300014 Google Scholar: Lookup Link MathSciNet: MR2930377 ·Zbl 1247.82040 ·doi:10.1142/S2010326311300014 |
[12] | C. Cosco and S. Nakajima. Gaussian fluctuations for the directed polymer partition function for \(\mathit{d} \geq 3\) and in the whole \(\mathit{L}^2\)-region. Ann. Inst. Henri Poincaré 57 (2021) 872-889. Digital Object Identifier: 10.1214/20-aihp1100 Google Scholar: Lookup Link MathSciNet: MR4260488 ·Zbl 1484.60112 ·doi:10.1214/20-aihp1100 |
[13] | J. Diehl, M. Gubinelli and N. Perkowski. The Kardar-Parisi-Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions. Comm. Math. Phys. 354 (2017) 549-589. Digital Object Identifier: 10.1007/s00220-017-2918-6 Google Scholar: Lookup Link MathSciNet: MR3663617 ·Zbl 1378.60116 ·doi:10.1007/s00220-017-2918-6 |
[14] | A. Dunlap, Y. Gu, L. Ryzhik and O. Zeitouni. Fluctuations of the solutions to the KPZ equation in dimensions three and higher. Probab. Theory Related Fields 176 (2020) 1217-1258. Digital Object Identifier: 10.1007/s00440-019-00938-w Google Scholar: Lookup Link MathSciNet: MR4087492 ·Zbl 1445.35345 ·doi:10.1007/s00440-019-00938-w |
[15] | A. Dunlap, Y. Gu, L. Ryzhik and O. Zeitouni. The random heat equation in dimensions three and higher: The homogenization viewpoint. Arch. Ration. Mech. Anal. 242 (2021) 827-873. Digital Object Identifier: 10.1007/s00205-021-01694-9 Google Scholar: Lookup Link MathSciNet: MR4331017 ·Zbl 1481.35031 ·doi:10.1007/s00205-021-01694-9 |
[16] | M. Furlan and J. C. Mourrat. A tightness criterion for random fields, with application to the Ising model. Electron. J. Probab. 22 (97) (2017) 1-29. Digital Object Identifier: 10.1214/17-EJP121 Google Scholar: Lookup Link MathSciNet: MR3724565 ·Zbl 1378.60065 ·doi:10.1214/17-EJP121 |
[17] | Y. Gu, L. Ryzhik and O. Zeitouni. The Edwards-Wilkinson limit of the random heat equation in dimensions three and higher. Comm. Math. Phys. 363 (2) (2018) 351-388. Available at 1710.00344. Digital Object Identifier: 10.1007/s00220-018-3202-0 Google Scholar: Lookup Link MathSciNet: MR3851818 ·Zbl 1400.82131 ·doi:10.1007/s00220-018-3202-0 |
[18] | M. Gubinelli, P. Imkeller and N. Perkowski. Paracontrolled distributions and singular PDEs. Forum Math. Pi 3 (2015) e6. Digital Object Identifier: 10.1017/fmp.2015.2 Google Scholar: Lookup Link MathSciNet: MR3406823 ·Zbl 1333.60149 ·doi:10.1017/fmp.2015.2 |
[19] | M. Gubinelli and N. Perkowski. KPZ reloaded. Comm. Math. Phys. 349 (2017) 165-269. Digital Object Identifier: 10.1007/s00220-016-2788-3 Google Scholar: Lookup Link MathSciNet: MR3592748 ·Zbl 1388.60110 ·doi:10.1007/s00220-016-2788-3 |
[20] | M. Hairer. Solving the KPZ equation. Ann. of Math. 178 (2013) 558-664. Digital Object Identifier: 10.4007/annals.2013.178.2.4 Google Scholar: Lookup Link MathSciNet: MR3071506 ·Zbl 1281.60060 ·doi:10.4007/annals.2013.178.2.4 |
[21] | M. Hairer. A theory of regularity structures. Invent. Math. 198 (2014) 269-504. Digital Object Identifier: 10.1007/s00222-014-0505-4 Google Scholar: Lookup Link MathSciNet: MR3274562 zbMATH: 1332.60093 ·Zbl 1332.60093 ·doi:10.1007/s00222-014-0505-4 |
[22] | E. Häusler and H. Luschgy. Stable Convergence and Stable Limit Theorems, 74. Springer, Cham, 2015. Digital Object Identifier: 10.1007/978-3-319-18329-9 Google Scholar: Lookup Link MathSciNet: MR3362567 ·Zbl 1356.60004 ·doi:10.1007/978-3-319-18329-9 |
[23] | J. Jacod and A. Shiryaev. Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin, 1987. Digital Object Identifier: 10.1007/978-3-662-02514-7 Google Scholar: Lookup Link MathSciNet: MR0959133 ·Zbl 0635.60021 ·doi:10.1007/978-3-662-02514-7 |
[24] | M. Kardar, G. Parisi and Y. Z. Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986) 889-892. ·Zbl 1101.82329 |
[25] | H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press, Cambridge, 1990. MathSciNet: MR1070361 ·Zbl 0743.60052 |
[26] | A. Kupiainen and M. Marcozzi. Renormalization of generalized KPZ equation. J. Stat. Phys. 166 (2017) 876-902. Digital Object Identifier: 10.1007/s10955-016-1636-3 Google Scholar: Lookup Link MathSciNet: MR3607594 ·Zbl 1369.82011 ·doi:10.1007/s10955-016-1636-3 |
[27] | P. Le Doussal. Crossover between various initial conditions in KPZ growth: Flat to stationary. J. Stat. Mech. Theory Exp. 2017 (5) (2017) 053210. Digital Object Identifier: 10.1088/1742-5468/aa6f3e Google Scholar: Lookup Link MathSciNet: MR3664390 ·Zbl 1457.82290 ·doi:10.1088/1742-5468/aa6f3e |
[28] | J. Magnen and J. Unterberger. The scaling limit of the KPZ equation in space dimension 3 and higher. J. Stat. Phys. 171 (4) (2018) 543-598. Digital Object Identifier: 10.1007/s10955-018-2014-0 Google Scholar: Lookup Link zbMATH: 1394.35508 MathSciNet: MR3790153 ·Zbl 1394.35508 ·doi:10.1007/s10955-018-2014-0 |
[29] | B. Meerson, P. V. Sasorov and A. Vilenkin. Nonequilibrium steady state of a weakly-driven Kardar-Parisi-Zhang equation. J. Stat. Mech. Theory Exp. 5 (2018). Digital Object Identifier: 10.1088/1742-5468/aabbcc Google Scholar: Lookup Link MathSciNet: MR3820099 ·Zbl 1459.82205 ·doi:10.1088/1742-5468/aabbcc |
[30] | C. Mukherjee. Central limit theorem for Gibbs measures including long range and singular interactions and homogenization of the stochastic heat equation. Ann. Appl. Probab. To appear, 2022. Available at arXiv:1706.09345. |
[31] | C. Mukherjee, A. Shamov and O. Zeitouni. Weak and strong disorder for the stochastic heat equation and the continuous directed polymer in \(\mathit{d} \geq 3\). Electron. Commun. Probab. 21 (2016). Digital Object Identifier: 10.1214/16-ECP18 Google Scholar: Lookup Link MathSciNet: MR3548773 ·Zbl 1348.60094 ·doi:10.1214/16-ECP18 |
[32] | J. Quastel Introduction to KPZ. In Current Developments in Mathematics 125-194. Int. Press, Somerville, MA, 2011. ·Zbl 1316.60019 |
[33] | T. Sasamoto and H. Spohn. The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140 (2010) 209-231. Digital Object Identifier: 10.1007/s10955-010-9990-z Google Scholar: Lookup Link MathSciNet: MR2659278 ·Zbl 1197.82093 ·doi:10.1007/s10955-010-9990-z |
[34] | A.-S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. Digital Object Identifier: 10.1007/978-3-662-11281-6 Google Scholar: Lookup Link MathSciNet: MR1717054 ·Zbl 0973.60003 ·doi:10.1007/978-3-662-11281-6 |
[35] | K. Takeuchi. An appetizer to modern developments on the Kardar-Parisi-Zhang universality class. Phys. A 504 (2018) 77-105. Digital Object Identifier: 10.1016/j.physa.2018.03.009 Google Scholar: Lookup Link MathSciNet: MR3805500 ·Zbl 1514.82024 ·doi:10.1016/j.physa.2018.03.009 |