Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Lattice theory of torsion classes: beyond \(\tau\)-tilting theory.(English)Zbl 1533.16015

It is well known that torsion classes are closely related to the study of derived categories and their t-structures.
Partly inspired by the cluster algebras ofS. Fomin andA. Zelevinsky [J. Am. Math. Soc. 15, No. 2, 497–529 (2002;Zbl 1021.16017)], the \(\tau\)-tilting theory [T. Adachi et al., Compos. Math. 150, No. 3, 415–452 (2014;Zbl 1330.16004);L. Demonet et al., Int. Math. Res. Not. 2019, No. 3, 852–892 (2019;Zbl 1485.16013)], provides insight into the structure of torsion classes, but it is generally forced to restrict its attention to functorially finite torsion classes.
In the paper under review, the authors develop methods to understand the whole lattice of torsion classes. These methods also shed new light on certain lattices built from Weyl groups, such as the weak order and Cambrian lattices. They establish a lattice theoretical framework to study the partially ordered set \(\operatorname{tors} A\) of torsion classes over a finite dimensional algebra \(A\), and show that \(\operatorname{tors} A\) is a complete lattice which enjoysvery strong properties, as bialgebraicity and complete semidistributivity. They introduce the brick labelling of its Hasse quiver and use it to study lattice congruences of \(\operatorname{tors} A\). In particular, they give a representation-theoretical interpretation of the so-called forcing order, and prove that \(\operatorname{tors} A\) is completely congruence uniform. When \(I\) is a two-sided ideal of \(A\), \(\operatorname{tors} A/I\) is a lattice quotient of \(\operatorname{tors} A\) which is called an algebraic quotient, and the corresponding lattice congruence is called an algebraic congruence.
The second part of this paper consists in studying algebraic congruences. They characterize the arrows of the Hasse quiver of \(\operatorname{tors} A\) that are contracted by an algebraic congruence in terms of the brick labelling. In the third part, they study in detail the case of preprojective algebras \(\Pi\), for which \(\operatorname{tors} \Pi\) is the Weyl group endowed with the weak order. In particular, they give a new, more representation theoretical proof of the isomorphism between \(\operatorname{tors} kQ\) and the Cambrian lattice when \(Q\) is a Dynkin quiver. They also prove that, in type A, the algebraic quotients of \(\operatorname{tors} \Pi\) are exactly its Hasse-regular lattice quotients.
The article is very well written and contains many general results.

MSC:

16G10 Representations of associative Artinian rings
06A07 Combinatorics of partially ordered sets
20F55 Reflection and Coxeter groups (group-theoretic aspects)

Cite

References:

[1]Adachi, Takahide, Classification of two-term tilting complexes over Brauer graph algebras, Math. Z., 1-36 (2018) ·Zbl 1433.16010 ·doi:10.1007/s00209-017-2006-9
[2]Adachi, Takahide, \( \tau \)-tilting theory, Compos. Math., 415-452 (2014) ·Zbl 1330.16004 ·doi:10.1112/S0010437X13007422
[3]Adaricheva, K. V., Join-semidistributive lattices and convex geometries, Adv. Math., 1-49 (2003) ·Zbl 1059.06003 ·doi:10.1016/S0001-8708(02)00011-7
[4]Adaricheva, K., Lattice theory: special topics and applications. Vol. 2. Classes of semidistributive lattices, 59-101 (2016), Birkh\"{a}user/Springer, Cham ·Zbl 1477.06043
[5]Asai, Sota, Semibricks, Int. Math. Res. Not. IMRN, 4993-5054 (2020) ·Zbl 1467.16009 ·doi:10.1093/imrn/rny150
[6]Auslander, Maurice, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, xiv+425 pp. (1997), Cambridge University Press, Cambridge ·Zbl 0834.16001
[7]Auslander, M., Almost split sequences in subcategories, J. Algebra, 426-454 (1981) ·Zbl 0457.16017 ·doi:10.1016/0021-8693(81)90214-3
[8]Barnard, Emily, Minimal inclusions of torsion classes, Algebr. Comb., 879-901 (2019) ·Zbl 1428.05314 ·doi:10.5802/alco.72
[9]Barnard, Emily, Coxeter-biCatalan combinatorics, J. Algebraic Combin., 241-300 (2018) ·Zbl 1387.05270 ·doi:10.1007/s10801-017-0775-1
[10]Birkhoff, Garrett, Lattice theory, American Mathematical Society Colloquium Publications, Vol. 25, vi+418 pp. (1979), American Mathematical Society, Providence, R.I. ·Zbl 0505.06001
[11]Bj\"{o}rner, Anders, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, xiv+363 pp. (2005), Springer, New York ·Zbl 1110.05001
[12]Buan, A. B., Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math., 1035-1079 (2009) ·Zbl 1181.18006 ·doi:10.1112/S0010437X09003960
[13]Chajda, I., Advances in algebra. Sectionally pseudocomplemented lattices and semilattices, 282-290 (2003), World Sci. Publ., River Edge, NJ ·Zbl 1048.06006
[14]P. Crawley and R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, NJ, 1973. ·Zbl 0494.06001
[15]Demonet, Laurent, \( \tau \)-tilting finite algebras, bricks, and \(g\)-vectors, Int. Math. Res. Not. IMRN, 852-892 (2019) ·Zbl 1485.16013 ·doi:10.1093/imrn/rnx135
[16]Derksen, Harm, General presentations of algebras, Adv. Math., 210-237 (2015) ·Zbl 1361.16006 ·doi:10.1016/j.aim.2015.03.012
[17]Eisele, Florian, A reduction theorem for \(\tau \)-rigid modules, Math. Z., 1377-1413 (2018) ·Zbl 1433.16011 ·doi:10.1007/s00209-018-2067-4
[18]Fomin, Sergey, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 497-529 (2002) ·Zbl 1021.16017 ·doi:10.1090/S0894-0347-01-00385-X
[19]Garver, Alexander, Lattice properties of oriented exchange graphs and torsion classes, Algebr. Represent. Theory, 43-78 (2019) ·Zbl 1408.16011 ·doi:10.1007/s10468-017-9757-1
[20]Gr\"{a}tzer, George, Lattice theory: foundation, xxx+613 pp. (2011), Birkh\"{a}user/Springer Basel AG, Basel ·Zbl 1233.06001 ·doi:10.1007/978-3-0348-0018-1
[21]Happel, Dieter, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, x+208 pp. (1988), Cambridge University Press, Cambridge ·Zbl 0635.16017 ·doi:10.1017/CBO9780511629228
[22]Hoang, Hung P., Combinatorial generation via permutation languages. II. Lattice congruences, Israel J. Math., 359-417 (2021) ·Zbl 1479.05182 ·doi:10.1007/s11856-021-2186-1
[23]Ingalls, Colin, Noncrossing partitions and representations of quivers, Compos. Math., 1533-1562 (2009) ·Zbl 1182.16012 ·doi:10.1112/S0010437X09004023
[24]Iyama, Osamu, Lattice structure of Weyl groups via representation theory of preprojective algebras, Compos. Math., 1269-1305 (2018) ·Zbl 1443.16016 ·doi:10.1112/s0010437x18007078
[25]Iyama, Osamu, Lattice structure of torsion classes for path algebras, Bull. Lond. Math. Soc., 639-650 (2015) ·Zbl 1397.16011 ·doi:10.1112/blms/bdv041
[26]Iyama, Osamu, Classifying \(\tau \)-tilting modules over the Auslander algebra of \(K[x]/(x^n)\), J. Math. Soc. Japan, 731-764 (2020) ·Zbl 1505.16011 ·doi:10.2969/jmsj/75117511
[27]Jasso, Gustavo, Reduction of \(\tau \)-tilting modules and torsion pairs, Int. Math. Res. Not. IMRN, 7190-7237 (2015) ·Zbl 1357.16028 ·doi:10.1093/imrn/rnu163
[28]Kase, Ryoichi, Weak orders on symmetric groups and posets of support \(\tau \)-tilting modules, Internat. J. Algebra Comput., 501-546 (2017) ·Zbl 1384.16011 ·doi:10.1142/S0218196717500266
[29]Keimel, Klaus, Lattice theory: special topics and applications. Vol. 1. Continuous and completely distributive lattices, 5-53 (2014), Birkh\"{a}user/Springer, Cham ·Zbl 1346.06005
[30]Mizuno, Yuya, Classifying \(\tau \)-tilting modules over preprojective algebras of Dynkin type, Math. Z., 665-690 (2014) ·Zbl 1355.16008 ·doi:10.1007/s00209-013-1271-5
[31]J. B. Nation, Revised notes on lattice theory, Lecture Notes available at http://www.math.hawaii.edu/ jb/books.htmlhttp://www.math.hawaii.edu/\( \sim\) jb/books.html.
[32]Palu, Yann, Non-kissing complexes and tau-tilting for gentle algebras, Mem. Amer. Math. Soc., vii+110 pp. (2021) ·Zbl 1541.16001 ·doi:10.1090/memo/1343
[33]Reading, Nathan, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A, 237-273 (2005) ·Zbl 1133.20027 ·doi:10.1016/j.jcta.2004.11.001
[34]Reading, Nathan, Sortable elements and Cambrian lattices, Algebra Universalis, 411-437 (2007) ·Zbl 1184.20038 ·doi:10.1007/s00012-007-2009-1
[35]Reading, Nathan, Noncrossing arc diagrams and canonical join representations, SIAM J. Discrete Math., 736-750 (2015) ·Zbl 1314.05015 ·doi:10.1137/140972391
[36]Reading, N., Lattice theory: special topics and applications. Vol. 2. Lattice theory of the poset of regions, 399-487 (2016), Birkh\"{a}user/Springer, Cham ·Zbl 1404.06004
[37]Reading, N., Lattice theory: special topics and applications. Vol. 2. Finite Coxeter groups and the weak order, 489-561 (2016), Birkh\"{a}user/Springer, Cham ·Zbl 1388.20056
[38]Ringel, Claus Michael, Representations of \(K\)-species and bimodules, J. Algebra, 269-302 (1976) ·Zbl 0338.16011 ·doi:10.1016/0021-8693(76)90184-8
[39]Ringel, Claus Michael, Algebras and modules, II. The preprojective algebra of a quiver, CMS Conf. Proc., 467-480 (1996), Amer. Math. Soc., Providence, RI ·Zbl 0928.16012
[40]Silver, L., Noncommutative localizations and applications, J. Algebra, 44-76 (1967) ·Zbl 0173.03305 ·doi:10.1016/0021-8693(67)90067-1
[41]Stenstr\"{o}m, Bo, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, viii+309 pp. (1975), Springer-Verlag, New York-Heidelberg ·Zbl 0296.16001
[42]Storrer, Hans H., Epimorphic extensions of non-commutative rings, Comment. Math. Helv., 72-86 (1973) ·Zbl 0258.16027 ·doi:10.1007/BF02566112
[43]Wald, Burkhard, Tame biserial algebras, J. Algebra, 480-500 (1985) ·Zbl 0567.16017 ·doi:10.1016/0021-8693(85)90119-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp