Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

Elliptic curves of type \(y^2 = x^3 - 3pqx\) having ranks zero and one.(English)Zbl 1532.11074

Summary: The group of rational points on an elliptic curve over \(\mathbb{Q}\) is always a finitely generated Abelian group, hence isomorphic to \(\mathbb{Z}^r \times G\) with \(G\) a finite Abelian group. Here, \(r\) is the rank of the elliptic curve. In this paper, we determine sufficient conditions that need to be set on the prime numbers \(p\) and \(q\) so that the elliptic curve \(E: y^2 = x^3 - 3pqx\) over \(\mathbb{Q}\) would possess a rank zero or one. Specifically, we verify that if distinct primes \(p\) and \(q\) satisfy the congruence \(p \equiv q \equiv 5\pmod{24}\), then \(E\) has rank zero. Furthermore, if \(p \equiv 5\pmod{12}\) is considered instead of a modulus of 24, then \(E\) has rank zero or one. Lastly, for primes of the form \(p = 24k + 17\) and \(q = 24\ell + 5\), where \(9k + 3\ell + 7\) is a perfect square, we show that \(E\) has rank one.

MSC:

11G05 Elliptic curves over global fields
14H52 Elliptic curves

Software:

SageMath

Cite

References:

[1]H. Daghigh & S. Didari (2014). On the elliptic curves of the form y 2 = x 3 -3px. Bulletin of the Iranian Mathematical Society, 40(5), 1119-1133. ·Zbl 1364.11104
[2]H. Daghigh & S. Didari (2015). On the elliptic curves of the form y 2 = x 3 -pqx. Iranian Journal of Mathematical Sciences and Informatics, 10(2), 77-86. https://doi.org/10.7508/ijmsi. 2015.02.008. ·Zbl 1395.11087 ·doi:10.7508/ijmsi.2015.02.008
[3]Y. Fujita & N. Terai (2011). Integer points and independent points on the elliptic curves y 2 = x 3 -p k x. Tokyo Journal of Mathematics, 34(2), 365-381. ·Zbl 1253.11043
[4]A. Hollier, B. Spearman & Q. Yang (2010). Elliptic curves y 2 = x 3 + pqx with maximal rank. International Mathematical Forum, 5(21-24), 1105-1110. ·Zbl 1238.11065
[5]N. Ismail & M. Misro (2022). Bezier coefficients matrix for elgamal elliptic curve cryptosys-tem. Malaysian Journal of Mathematical Sciences, 16(3), 483-499. https://doi.org/10.47836/ mjms.16.3.06. ·Zbl 1541.94053 ·doi:10.47836/mjms.16.3.06
[6]S. W. Kim (2015). Ranks of elliptic curves y 2 = x 3 ± 4px. International Journal of Algebra, 9(5), 205-211. https://doi.org/10.12988/ija.2015.5421. ·doi:10.12988/ija.2015.5421
[7]N. F. H. A. Saffar & M. R. M. Said (2015). Speeding up the elliptic curve scalar multiplication using the window-w non adjacent form. Malaysian of Mathematical Sciences, 9(1), 91-110.
[8]J. H. Silverman & J. Tate (1985). Rational points on elliptic curves. Springer, New York.
[9]B. Spearman (2007). Elliptic curves y 2 = x 3 -px of rank two. Mathematical Journal of Okayama University, 49, 183-184. ·Zbl 1132.11328
[10]B. Spearman (2007). On the group structure of elliptic curves y 2 = x 3 -2px. International Journal of Algebra, 1(5-8), 247-250. http://dx.doi.org/10.12988/ija.2007.07026. ·Zbl 1137.11040 ·doi:10.12988/ija.2007.07026
[11]W. A. Stein (2020). Sage mathematics software (version 9.2). The Sage Development Team, (USA). http://www.sagemath.org.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp