[1] | H. Daghigh & S. Didari (2014). On the elliptic curves of the form y 2 = x 3 -3px. Bulletin of the Iranian Mathematical Society, 40(5), 1119-1133. ·Zbl 1364.11104 |
[2] | H. Daghigh & S. Didari (2015). On the elliptic curves of the form y 2 = x 3 -pqx. Iranian Journal of Mathematical Sciences and Informatics, 10(2), 77-86. https://doi.org/10.7508/ijmsi. 2015.02.008. ·Zbl 1395.11087 ·doi:10.7508/ijmsi.2015.02.008 |
[3] | Y. Fujita & N. Terai (2011). Integer points and independent points on the elliptic curves y 2 = x 3 -p k x. Tokyo Journal of Mathematics, 34(2), 365-381. ·Zbl 1253.11043 |
[4] | A. Hollier, B. Spearman & Q. Yang (2010). Elliptic curves y 2 = x 3 + pqx with maximal rank. International Mathematical Forum, 5(21-24), 1105-1110. ·Zbl 1238.11065 |
[5] | N. Ismail & M. Misro (2022). Bezier coefficients matrix for elgamal elliptic curve cryptosys-tem. Malaysian Journal of Mathematical Sciences, 16(3), 483-499. https://doi.org/10.47836/ mjms.16.3.06. ·Zbl 1541.94053 ·doi:10.47836/mjms.16.3.06 |
[6] | S. W. Kim (2015). Ranks of elliptic curves y 2 = x 3 ± 4px. International Journal of Algebra, 9(5), 205-211. https://doi.org/10.12988/ija.2015.5421. ·doi:10.12988/ija.2015.5421 |
[7] | N. F. H. A. Saffar & M. R. M. Said (2015). Speeding up the elliptic curve scalar multiplication using the window-w non adjacent form. Malaysian of Mathematical Sciences, 9(1), 91-110. |
[8] | J. H. Silverman & J. Tate (1985). Rational points on elliptic curves. Springer, New York. |
[9] | B. Spearman (2007). Elliptic curves y 2 = x 3 -px of rank two. Mathematical Journal of Okayama University, 49, 183-184. ·Zbl 1132.11328 |
[10] | B. Spearman (2007). On the group structure of elliptic curves y 2 = x 3 -2px. International Journal of Algebra, 1(5-8), 247-250. http://dx.doi.org/10.12988/ija.2007.07026. ·Zbl 1137.11040 ·doi:10.12988/ija.2007.07026 |
[11] | W. A. Stein (2020). Sage mathematics software (version 9.2). The Sage Development Team, (USA). http://www.sagemath.org. |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.