42B35 | Function spaces arising in harmonic analysis |
46E30 | Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) |
49Q20 | Variational problems in a geometric measure-theoretic setting |
[1] | Aldaz, J. M.; Pérez Lázaro, J., Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Am. Math. Soc., 5, 2443-2461 (2007) ·Zbl 1143.42021 |
[2] | Almgren, F. J.; Lieb, E. H., Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc., 4, 683-773 (1989) ·Zbl 0688.46014 |
[3] | Baernstein, A., Symmetrization in Analysis. New Mathematical Monographs (2019), Cambridge University Press: Cambridge University Press Cambridge, xviii+473 pp. ·Zbl 1509.32001 |
[4] | Bourdaud, G., Remarques sur certains sous-espaces de \(\text{BMO}( \mathbb{R}^n)\) et de \(\operatorname{bmo}( \mathbb{R}^n)\). Ann. Inst. Fourier (Grenoble), 4, 1187-1218 (2002), (in French) ·Zbl 1061.46025 |
[5] | Brezis, H.; Nirenberg, L., Degree theory and BMO. I. Compact manifolds without boundaries. Sel. Math. New Ser., 2, 197-263 (1995) ·Zbl 0852.58010 |
[6] | Brezis, H.; Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ., 7, 773-789 (1980) ·Zbl 0437.35071 |
[7] | Burchard, A., Steiner symmetrization is continuous in \(W^{1 , p}\). Geom. Funct. Anal., 5, 823-860 (1997) ·Zbl 0912.46034 |
[8] | Burchard, A.; Dafni, G.; Gibara, R., Mean oscillation bounds on rearrangements. Trans. Am. Math. Soc., 6, 4429-4444 (2022) ·Zbl 1491.42033 |
[9] | Butaev, A.; Dafni, G., Approximation and extension of functions of vanishing mean oscillation. J. Geom. Anal., 6892-6921 (2020) ·Zbl 1471.42049 |
[10] | Carneiro, E.; Madrid, J.; Pierce, L. B., Endpoint Sobolev and BV continuity for maximal operators. J. Funct. Anal., 10, 3262-3294 (2017) ·Zbl 1402.42024 |
[11] | Chiarenza, F.; Frasca, M.; Longo, P., \( W^{2 , p}\)-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc., 2, 841-853 (1993) ·Zbl 0818.35023 |
[12] | Coron, J.-M., The continuity of the rearrangement in \(W^{1 , p}(\mathbb{R})\). Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 1, 57-85 (1984) ·Zbl 0574.46021 |
[13] | Dafni, G.; Gibara, R., BMO on shapes and sharp constants, 1-33 ·Zbl 1468.46039 |
[14] | John, F.; Nirenberg, L., On functions of bounded mean oscillation. Commun. Pure Appl. Math., 415-426 (1961) ·Zbl 0102.04302 |
[15] | Hansson, K., Imbedding theorems of Sobolev type in potential theory. Math. Scand. (1979) ·Zbl 0437.31009 |
[16] | Korenovskii, A., Mean Oscillations and Equimeasurable Rearrangements of Functions. Lecture Notes of the Unione Matematica Italiana (2007), Springer/UMI: Springer/UMI Berlin/Bologna, viii+188 pp. ·Zbl 1133.42035 |
[17] | Krylov, N. V., Parabolic elliptic equations with VMO coefficients. Commun. Partial Differ. Equ., 453-475 (2007) ·Zbl 1114.35079 |
[18] | Luiro, H., Continuity of the maximal operator in Sobolev spaces. Proc. Am. Math. Soc., 1, 243-251 (2007) ·Zbl 1136.42018 |
[19] | Madrid, J., Endpoint Sobolev and BV continuity for maximal operators, II. Rev. Mat. Iberoam., 7, 2151-2168 (2019) ·Zbl 1429.42021 |
[20] | Maz’ya, V.; Mitrea, M.; Shaposhnikova, T., The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients. J. Anal. Math., 167-239 (2010) ·Zbl 1199.35080 |
[21] | Pólya, G., Problem. Arch. Math. Phys. Ser., 28, 174 (1920) |
[22] | Pólya, G.; Szegő, G., Problems and Theorems in Analysis, vol. I (1998), Springer ·Zbl 0338.00001 |
[23] | Sarason, D., Functions of vanishing mean oscillation. Trans. Am. Math. Soc., 391-405 (1975) ·Zbl 0319.42006 |
[24] | Stein, E. M.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series (1971), Princeton University Press: Princeton University Press Princeton, N.J., x+297 pp. ·Zbl 0232.42007 |
[25] | Uchiyama, A., On the compactness of operators of Hankel type. Tohoku Math. J. (2), 1, 163-171 (1978) ·Zbl 0384.47023 |