Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Bifurcation of limit cycles and isochronous centers on center manifolds for four-dimensional systems.(English)Zbl 1531.34045

This paper studies the bifurcation of limit cycles and isochronous centers on center manifolds for four-dimensional nonlinear dynamic systems. These systems under study have a pair of purely imaginary eigenvalues and a pair of eigenvalues with negative real part for the Jacobian matrix corresponding to the singularity situated at the origin. By computing singular point values at the origin, some interesting results are obtained and the article is well written.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations

Cite

References:

[1]Hilbert, D., Mathematical problems, Bull Am Math Soc, 8, 10, 437-479, 1902 ·JFM 33.0976.07
[2]Ilyashenko, Y., Centennial history of Hilbert’s 16th problem, Bull Am Math Soc, 39, 03, 301-355, 2002 ·Zbl 1004.34017
[3]Li, J., Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Int J Bifur Chaos, 13, 01, 47-106, 2003 ·Zbl 1063.34026
[4]Wang, Q.; Liu, Y.; Chen, H., Hopf bifurcation for a class of three‐dimensional nonlinear dynamic systems, Bull Sci Math, 134, 7, 786-798, 2010 ·Zbl 1204.37051
[5]Tian, Y.; Yu, P., Seven limit cycles around a focus point in a simple three‐dimensional quadratic vector field, Int J Bifur Chaos, 24, 06, 2014 ·Zbl 1296.34101
[6]Yu, P.; Han, M., Ten limit cycles around a center‐type singular point in a 3‐d quadratic system with quadratic perturbation, Appl Math Lett, 44, 17-20, 2015 ·Zbl 1336.34051
[7]Wang, Q.; Huang, W.; Feng, J., Multiple limit cycles and centers on center manifolds for Lorenz system, Appl Math Comput, 238, 281-288, 2014 ·Zbl 1334.37089
[8]Huang, W.; Wang, Q.; Chen, A., Hopf bifurcation and the centers on center manifold for a class of three‐dimensional circuit system, Math Methods Appl Sci, 43, 4, 1988-2000, 2020 ·Zbl 1453.34069
[9]Sang, B.; Wang, Q.; Huang, W., Computation of focal values and stability analysis of 4‐dimensional systems, Electron J Differ Equ, 209, 1-11, 2015 ·Zbl 1329.34070
[10]Llibre, J.; Makhlouf, A.; Badi, S., 3‐dimensional Hopf bifurcation via averaging theory of second order, Discr Contin Dyn Syst, 25, 4, 1287-1295, 2009 ·Zbl 1186.37059
[11]Silva, P.; Buzzi, C.; Llibre, J., 3‐dimensional Hopf bifurcation via averaging theory, Discr Contin Dyn Syst, 17, 529-540, 2017 ·Zbl 1137.37026
[12]Edneral, VF; Mahdi, A.; Romanovskic, VG; Shafer, DS, The center problem on a center manifold in \(\operatorname{\mathbb{R}}^3\), Nonlinear Anal Real World Appl, 75, 2614-2622, 2012 ·Zbl 1259.34021
[13]Romanovski, V.; Shafer, D., Computation of focus quantities of three dimensional polynomial systems, J Shanghai Norm Univ (Natural Sciences), 43, 5, 529-544, 2014
[14]Buica, A.; García, IA; Maza, S., Multiple Hopf bifurcation in \(\mathbb{R}^3\) and inverse Jacobi multipliers, J Differ Equ, 256, 310-325, 2014 ·Zbl 1346.37050
[15]García, IA; Maza, S.; Shafer, DS, Cyclicity of polynomial nondegenerate centers on center manifolds, J Differ Equ, 265, 11, 5767-5808, 2018 ·Zbl 1434.37030
[16]García, IA; Maza, S.; Shafer, DS, Center cyclicity of Lorenz, Chen and Lü systems, Nonlinear Anal, 188, 362-376, 2019 ·Zbl 1428.37046
[17]Needham, DJ, A centre theorem for two‐dimensional complex holomorphic systems and its generalizations, Proc R Soc Lond A, 450, 1939, 225-232, 1995 ·Zbl 0835.34007
[18]Loud, WS, Behavior of the period of solutions of certain plane autonomous systems near centers, Contrib Differ Equ, 3, 21-36, 1964 ·Zbl 0139.04301
[19]Pleshkan, I., A new method of investigating the isochronicity of a system of two differential equations, Differ Equ, 5, 796-802, 1969 ·Zbl 0252.34034
[20]Chavarriga, J.; Giné, J.; García, IA, Isochronous centers of a linear center perturbed by fourth degree homogrneous polynomial, Bull Sci Math, 123, 2, 77-96, 1999 ·Zbl 0921.34032
[21]Chavarriga, J.; Giné, J.; García, IA, Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomial, J Comput Appl Math, 126, 1‐2, 351-368, 2000 ·Zbl 0978.34028
[22]Dolićanin‐Dekić, D., Strongly isochronous centers of cubic systems with degenerate infinity, Differ Equ, 50, 7, 971-975, 2014 ·Zbl 1316.34030
[23]Llibre, J.; Romanovski, VG, Isochronicity and linearizability of planar polynomial Hamiltonian systems, J Differ Equ, 259, 5, 1649-1662, 2015 ·Zbl 1347.37103
[24]Li, F.; Liu, Y.; Liu, Y.; Yu, P., Complex isochronous centers and linearization transformations for cubic Z \({}_2\)‐equivariant planar systems, J Diff Eqs, 268, 7, 3819-3847, 2020 ·Zbl 1511.34041
[25]Chicone, C.; Jacobs, M., Bifurcations of critical periods for planar vector fields, Trans Amer Math Soc, 312, 2, 433-486, 1989 ·Zbl 0678.58027
[26]Gasull, A.; Guillamon, A.; Mañosa, V., An explicit expression of the first Liapunov and period constants with applications, J Math Anal Appl, 211, 1, 190-212, 1997 ·Zbl 0882.34040
[27]Gasull, A.; Guillamon, A.; Mañosa, V., The period function for Hamiltonian systems with homogeneous nonlinearities, J Math Anal Appl, 139, 237-260, 1997 ·Zbl 0891.34033
[28]Yu, P.; Han, M., Critical periods of planar revertible vector field with third‐degree polynomial functions, Int J Bifur Chaos, 19, 19-433, 2009 ·Zbl 1170.34316
[29]Romanovski, VG; Shafer, AS, The center and cyclicity problems, A Computational Algebra Approach, 2009, Boston: Birkhäuser ·Zbl 1192.34003
[30]Christopher, CJ; Devlin, J., Isochronous centers in planar polynomial systems, SIAM J Math Anal, 28, 162-177, 1997 ·Zbl 0881.34057
[31]Liu, Y.; Huang, W., A new method to determine isochronous center conditions for polynomial differential systems, Bull Sci Math, 127, 2, 133-148, 2003 ·Zbl 1034.34032
[32]Huang, W.; Chen, A.; Xu, Q., Bifurcation of limit cycles and isochronous centers for a quartic system, Int J Bifur Chaos, 10, 2013 ·Zbl 1277.34044
[33]Chen, T.; Huang, W.; Ren, D., Weak centers and local critical periods for a \(Z_2\)‐equivariant cubic system, Nonlinear Dyn, 78, 2319-2329, 2014
[34]Wang, Q.; Huang, W.; Du, C., The isochronous center on center manifolds for three dimensional differential systems, 2019
[35]Liu, Y.; Li, J., Theory of values of singular point in complex autonomous differential system, Sci China (Ser a), 33, 10-24, 1990 ·Zbl 0686.34027
[36]Amel’kin, VV; Lukashevich, NA; Sadovsky, AP, Non‐linear Oscillations in the Systems of Second Order, 1982, Minsk: Belarusian University Press ·Zbl 0526.70024
[37]Carr, J., Applications of Centre Manifold Theory, 1981, New York: Springer‐Verlag ·Zbl 0464.58001
[38]Yu, P.; Corless, R., Symbolic computation of limit cycles associated with Hilbert’s 16th problem, Commun Nonlin Sci Numer Simulat, 14, 12, 4041-4056, 2009 ·Zbl 1221.34082
[39]Han, M.; Yang, J., The maximum number of zeros of functions with parameters and application to differential equations, J Nonlinear Model Anal, 3, 13-34, 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp